• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
  • Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model

Article dans une revue avec comité de lecture
Auteur
URCUN, Stéphane
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ROHAN, Pierre-Yves
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
SCIUMÈ, Giuseppe
1002421 Institut de Mécanique et d'Ingénierie [I2M]
BORDAS, Stéphane P.A.
104741 Université du Luxembourg [Uni.lu]

URI
http://hdl.handle.net/10985/21321
DOI
10.1016/j.jmbbm.2021.104952
Date
2021
Journal
Journal of the Mechanical Behavior of Biomedical Materials

Résumé

This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1 µm/s to 100 µm/s. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretised in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to re-sort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings.

Fichier(s) constituant cette publication

Nom:
IBHGC_JMBBM_2021_URCUN.pdf
Taille:
559.5Ko
Format:
PDF
Fin d'embargo:
2022-06-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Digital twinning of Cellular Capsule Technology: Emerging outcomes from the perspective of porous media mechanics 
    Article dans une revue avec comité de lecture
    URCUN, Stéphane; ROHAN, Pierre-Yves; SKALLI, Wafa; NASSOY, Pierre; BORDAS, Stéphane P. A.; SCIUMÈ, Giuseppe (Public Library of Science (PLoS), 2021)
    Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation ...
  • Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model 
    Article dans une revue avec comité de lecture
    URCUN, Stéphane; ROHAN, Pierre-Yves; SCIUMÈ, Giuseppe; BORDAS, Stéphane P.A. (Elsevier BV, 2021)
    This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle ...
  • Numerical investigation of the time-dependent stress–strain mechanical behaviour of skeletal muscle tissue in the context of pressure ulcer prevention 
    Article dans une revue avec comité de lecture
    LAVIGNE, T.; SCIUMÈ, Giuseppe; LAPORTE, Sébastien; PILLET, Hélène; URCUN, Stéphane; WHEATLEY, B.; ROHAN, Pierre-Yves (Elsevier BV, 2022)
    Background Pressure-induced tissue strain is one major pathway for Pressure Ulcer development and, especially, Deep Tissue Injury. Biomechanical investigation of the time-dependent stress–strain mechanical behaviour of ...
  • Quantifying discretization errors for soft tissue simulation in computer assisted surgery: A preliminary study 
    Article dans une revue avec comité de lecture
    DUPREZ, Michel; BORDAS, Stéphane Pierre Alain; BUCKI, Marek; BUI, Huu Phuoc; CHOULY, Franz; LLERAS, Vanessa; LOBOS, Claudio; LOZINSKI, Alexei; ROHAN, Pierre-Yves; TOMAR, Satyendra (Elsevier, 2020)
    Errors in biomechanics simulations arise from modelling and discretization. Modelling errors are due to the choice of the mathematical model whilst discretization errors measure the impact of the choice of the numerical ...
  • Microstructural characterization of annulus fibrosus by ultrasonography: a feasibility study with an in vivo and in vitro approach 
    Article dans une revue avec comité de lecture
    LANGLAIS, Tristan; DESPRAIRIES, Pierre; PIETTON, Raphaël; ROHAN, Pierre-Yves; DUBOUSSET, Jean; MEAKIN, Judith R.; WINLOVE, Peter C.; VIALLE, Raphaël; SKALLI, Wafa; VERGARI, Claudio (Springer Verlag, 2019)
    The main function of the intervertebral disc is biomechanical function, since it must resist repetitive high loadings, while giving the spine its flexibility and protecting the spinal cord from over-straining. It partially ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales