• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Ingénierie des fluides Systèmes énergétiques (LIFSE)
  • View Item
  • Home
  • Laboratoire Ingénierie des fluides Systèmes énergétiques (LIFSE)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cavitation control using passive flow control techniques

Article dans une revue avec comité de lecture
Author
ZARESHARIF, Mahshid
KINAHAN, David J.
DELAURE, Yan M. C.
ccRAVELET, Florent
1003528 Laboratoire d'Ingénierie des Fluides et des Systèmes Énergétiques [LIFSE]

URI
http://hdl.handle.net/10985/21361
DOI
10.1063/5.0071781
Date
2021
Journal
Physics of Fluids

Abstract

Passive flow control techniques, and particularly vortex generators have been used successfully in a broad range of aero- and hydrodynamics applications to alter the characteristics of boundary layer separation. This study aims to review how such techniques can mitigate the extent and impact of cavitation in incompressible flows. This review focuses first on vortex generators to characterize key physical principles. It then considers the complete range of passive flow control technologies, including surface conditioning and roughness, geometry modification, grooves, discharge, injection, obstacles, vortex generators, and bubble generators. The passive flow control techniques reviewed typically delay and suppress boundary layer separation by decreasing the pressure gradient at the separation point. The literature also identifies streamwise vortices that result in the transfer of momentum from the free stream to near-wall low energy flow regions. The area of interest concerns hydraulic machinery, whose performance and life span are particularly susceptible to cavitation. The impact on performance includes a reduction in efficiency and fluctuations in discharge pressure and flow, while cavitation can greatly increase wear of bearings, wearing rings, seals, and impeller surfaces due to excessive vibration and surface erosion. In that context, few studies have also shown the positive effects that passive controls can have on the hydraulic performance of centrifugal pumps, such as total head and efficiency. It is conceivable that a new generation of design in hydraulic systems may be possible if simple design features can be conceived to maximize power transfer and minimize losses and cavitation. There are still, however, significant research gaps in understanding a range of impact factors such as manufacturing processes, lifetime, and durability, and essentially how a static design can be optimized to deliver improved performance over a realistic range of operating conditions.

Files in this item

Name:
LIFSE_POF_2021_RAVALET.pdf
Size:
2.543Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Ingénierie des fluides Systèmes énergétiques (LIFSE)

Related items

Showing items related by title, author, creator and subject.

  • A Thin Film Fluid Structure Interaction Model for the Study of Flexible Structure Dynamics in Centrifugal Pumps 
    Article dans une revue avec comité de lecture
    ALBADAWI, Abdulaleem; SPECKLIN, Mathieu; CONNOLLY, Robert; DELAURÉ, Yan (American Society of Mechanical Engineers, 2018)
    This paper describes a fluid-structure interaction (FSI) model for the study of flexible cloth-like structures or the so-called rags in flows through centrifugal pumps. The structural model and its coupling to the flow ...
  • High Accuracy Volume Flow Rate Measurement Using Vortex Counting 
    Article dans une revue avec comité de lecture
    ZAARAOUI, Abdelkader; MARGNAT, Florent; ccRAVELET, Florent; ccKHELLADI, Sofiane (Elsevier, 2013)
    A prototype device for measuring the volumetric flow-rate by counting vortices has been designed and realized. It consists of a square-section pipe in which are placed a two-dimensional bluff body and a strain gauge force ...
  • Experimental study of hydraulic transport of large particles in horizontal pipes 
    Article dans une revue avec comité de lecture
    REY, Robert; ccRAVELET, Florent; ccBAKIR, Farid; ccKHELLADI, Sofiane (Elsevier, 2013)
    This article presents an experimental study of the hydraulic transport of very large solid particles (above 5 mm) in an horizontal pipe. Two specific masses are used for the solids. The solids are spheres that are large ...
  • Experimental study of the instationary flow between two ducted Counter-rotating rotors 
    Article dans une revue avec comité de lecture
    NOURI, Hussain; DANLOS, Amélie; ccRAVELET, Florent; ccSARRAF, Christophe; ccBAKIR, Farid (American Society of Mechanical Engineers, 2013)
    The purpose of this work is to study experimentally the aerodynamic characteristics of a subsonic counter-rotating axial-flow fans system operating in a ducted configuration. The fans of diameter D = 375 mm were designed ...
  • Cavitation regime detection through Proper Orthogonal Decomposition: dynamics analysis of the sheet cavity on a grooved convergent-divergent nozzle 
    Article dans une revue avec comité de lecture
    DANLOS, Amélie; ccRAVELET, Florent; ccCOUTIER-DELGOSHA, Olivier; ccBAKIR, Farid (Elsevier, 2014)
    The unsteady character of the sheet cavity dynamics on the suction side of hydrofoils, on convergent–divergent nozzles or on blades in turbines and propellers is responsible for many issues like erosion, noise and vibrations. ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales