• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of residual stress fields after shot-peening of TRIP780 steel with second-order and artificial neural network models based on multi-impact finite element simulations

Article dans une revue avec comité de lecture
Auteur
DAOUD, M.
549864 Institut de recherche technologique Matériaux Métallurgie et Procédés [IRT M2P]
ccKUBLER, Regis
211915 Mechanics surfaces and materials processing [MSMP]
BEMOU, A.
OSMOND, P.
7736 PSA Peugeot - Citroën [PSA]
ccPOLETTE, Arnaud
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/21464
DOI
10.1016/j.jmapro.2021.10.034
Date
2021
Journal
Journal of Manufacturing Processes

Résumé

Shot-peening is a mechanical surface treatment widely employed to enhance the fatigue life of metallic components by generating compressive residual stress fields below the surface. These fields are mainly impacted by the selection of the process parameters. The aim of this work is to propose a hybrid approach to conduct two predictive models: second-order model and feed-forward artificial neural network model. For this purpose, a 3D multiple-impact finite element model coupled to a central composite design of experiments was employed. A parametric analysis was also conducted to investigate the effect of the shot diameter, the shot velocity, the coverage, and the impact angle on the induced residual stress profile within a TRIP780 steel. It was found that both models predict with good agreement, the residual stress profile as a function of the process parameters and can be used in shot-peening optimization due to their responsiveness.

Fichier(s) constituant cette publication

Nom:
MSMP__JOMP_2021_KUBLER.pdf
Taille:
1.204Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Shot peening analysis on trip780 steel exhibiting martensitic transformation 
    Conférence invitée
    GUIHEUX, Romain; BOUSCAUD, Denis; PATOOR, Etienne; PUYDT, Quentin; OSMOND, Pierre; WEBER, Bastien; ccBERVEILLER, Sophie; ccKUBLER, Regis (2017)
    The microstructure and mechanical fields were studied on a cold-rolled TRIP 780 steel after conventional shot peening, and with or without pre-strain; for the first time, results were compared to numerical simulations at ...
  • Shot Peening Analysis on Trip780 Steel Exhibiting Martensitic Transformation 
    Communication avec acte
    GUIHEUX, Romain; BOUSCAUD, Denis; PATOOR, Etienne; PUYDT, Quentin; OSMOND, Pierre; WEBER, Bastien; ccBERVEILLER, Sophie; ccKUBLER, Regis (ShotPeener ICSP13, 2017)
    In the last years, due to increasing ecology and environmental constraints, a search for lightweight structures has been carried out, leading to the use of more complex geometries and new materials. In that context, TRIP ...
  • Case‑based tuning of a metaheuristic algorithm exploiting sensitivity analysis and design of experiments for reverse engineering applications 
    Article dans une revue avec comité de lecture
    ccSHAH GHAZANFAR, Ali; ccPOLETTE, Arnaud; ccPERNOT, Jean-Philippe; GIANNINI, Franca; MONTI, Marina (SPRINGER, 2022-03-17)
    Due to its capacity to evolve in a large solution space, the Simulated Annealing (SA) algorithm has shown very promising results for the Reverse Engineering of editable CAD geometries including parametric 2D sketches, ...
  • Survey on the View Planning Problem for Reverse Engineering and Automated Control Applications 
    Article dans une revue avec comité de lecture
    PEUZIN-JUBERT, Manon; NOZAIS, Dominique; MARI, Jean-Luc; ccPERNOT, Jean-Philippe; ccPOLETTE, Arnaud (Elsevier BV, 2021-12)
    At present, optical sensors are being widely used to realize high quality control or reverse engineering of products, systems, buildings, environments or human bodies. Although the intrinsic characteristics of such ...
  • On the Use of Quality Metrics to Characterize Structured Light-based Point Cloud Acquisitions 
    Article dans une revue avec comité de lecture
    LI, Tingcheng; RUDING, Lou; DOMINIQUE, NOZAIS; ZILONG, SHAO; ccPERNOT, Jean-Philippe; ccPOLETTE, Arnaud (Computer-Aided Design & Applications, 2023-01-01)
    Even if 3D acquisition systems are nowadays more and more e cient, the resulting point clouds nevertheless contain quality defects that must be taken into account beforehand, in order to better anticipate and control ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales