Surrogates and Classification approaches for Efficient Global Optimization (EGO) with Inequality Constraints
Communication avec acte
Date
2017-05Résumé
In this work, we compare the use of Gaussian Process (GP) models for the constraints [Schonlau 1997] with a classification approach relying on a Least-Squares Support Vector Machine (LS-SVM) [Suykens and Vandewalle 1999]. We propose several adaptations of the classification approach in order to improve the efficiency of the EGO procedure, in particular an extension of the binary LS-SVM classifier to come-up with a probabilistic estimation of the feasible domain. The efficiencies of the GP-models and classification methods are compared in term of computational complexities, distinguishing the construction of the GPmodels
or LS-SVM classifier from the resolution of the optimization problem. The effect of the number of design parameters on the numerical costs is also investigated. The approaches are tested on the optimization of a complex non-linear Fluid-Structure Interaction system modeling a two dimensional flexible hydrofoil. Multi-design variables, defining the unloaded geometry of the
foil and the characteristics of its elastic trailing edge, are used in the minimization of the foil’s drag, under constraints set to ensure minimal lift force and prevent cavitation at selected boat-speeds.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureSACHER, Matthieu; DUVIGNEAU, Régis; LE MAÎTRE, Olivier; DURAND, Mathieu; BERRINI, Elisa; HAUVILLE, Frederic (Springer Verlag (Germany), 2018)Gaussian-Process based optimization methods have become very popular in recent years for the global optimization of complex systems with high computational costs. These methods rely on the sequential construction of a ...
-
Communication avec acteSACHER, Matthieu; DURAND, Mathieu; BERRINI, Elisa; DUVIGNEAU, Régis; LE MAITRE, Olivier; HAUVILLE, Frederic (2017)This paper investigates the use of constrained surrogate models to solve the multi-design optimization problem of a flexible hydrofoil. The surrogate-based optimization (EGO) substitutes the complex objective function of ...
-
Communication avec acteSACHER, Matthieu; DURAND, Mathieu; BERRINI, Elisa; DUVIGNEAU, Régis; LE MAITRE, O; HAUVILLE, Frederic (2017)This paper investigates the use of constrained surrogate models to solve the multi-design optimization problem of a flexible hydrofoil. The surrogate-based optimization (EGO) substitutes the complex objective function of ...
-
Article dans une revue avec comité de lectureSACHER, Matthieu; LE MAITRE, Olivier; DUVIGNEAU, Régis; DURAND, Mathieu; LOTHODE, Corentin; HAUVILLE, Frederic (Begell, 2021)Efficient global optimization (EGO) has become a standard approach for the global optimization of complex systems with high computational costs. EGO uses a training set of objective function values computed at selected ...
-
Article dans une revue avec comité de lectureSACHER, Matthieu; DUVIGNEAU, Régis; LE MAÎTRE, Olivier; AUBIN, Nicolas; DURAND, Mathieu; HAUVILLE, Frederic (Elsevier, 2017)This paper investigates the use of Gaussian processes to solve sail trimming optimization problems. The Gaussian process, used to model the dependence of the performance with the trimming parameters, is constructed from a ...