Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers
Article dans une revue avec comité de lecture
Date
2022-04-28Journal
Journal of Fluid MechanicsRésumé
A hypersonic, spatially evolving turbulent boundary layer at Mach 12.48 with a cooled wall is analysed by means of direct numerical simulations. At the selected conditions, massive kinetic-to-internal energy conversion triggers thermal and chemical non-equilibrium phenomena. Air is assumed to behave as a five-species reacting mixture, and a two-temperaturemodel is adopted to account for vibrational non-equilibrium.Wall cooling partly counteracts the effects of friction heating, and the temperature rise in the boundary layer excites vibrational energy modes while inducing mild chemical dissociation of oxygen. Vibrational non-equilibrium is mostly driven by molecular nitrogen, characterized by slower relaxation rates than the other molecules in the mixture. The results reveal that thermal non-equilibrium is sustained by turbulent mixing: sweep and ejection events efficiently redistribute the gas, contributing to the generation of a vibrationally under-excited state close to the wall, and an over-excited state in the outer region of the boundary layer. The tight coupling between turbulence and thermal effects is quantified by defining an interaction indicator. A modelling strategy for the vibrational energy turbulent
flux is proposed, based on the definition of a vibrational turbulent Prandtl number. The validity of the strong Reynolds analogy under thermal non-equilibrium is also evaluated.
Strong compressibility effects promote the translational–vibrational energy exchange, but no preferential correlation was detected between expansions/compressions and vibrational over-/under-excitation, as opposed to what has been observed for unconfined turbulent configurations.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteA high-order shock-capturing finite-difference scheme for scale-resolving numerical simulations of hypersonic high-enthalpy flows, involving thermal non-equilibrium effects, is presented. The suitability of the numerical ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2021-04)The influence of high-enthalpy effects in hypersonic, spatially developing boundary layers is investigated by means of direct numerical simulations. The flow of a reacting mixture of nitrogen and oxygen over a flat plate ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2023-03-29)The dynamics of a shock wave impinging on a freestream-perturbed high-enthalpy boundary layer is investigated by means of direct numerical simulation. The oblique shock impacts on a cooled flat-plate boundary layer with ...
-
Communication sans actePASSIATORE, Donatella; SCIACOVELLI, Luca; PASCAZIO, Giuseppe; CINNELLA, Paola (IUTAM, International Union of Theoretical and Applied Mechanics, 2021-08)The influence of high-temperature effects on compressible wall-bounded turbulence is investigated by means of a direct numerical simulation of a hypersonic, chemically out-of-equilibrium, turbulent boundary layer. The ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (Council of the Aeronautical Sciences, 2022-11)A hypersonic turbulent boundary layer over a flat plate is numerically investigated. The large Mach number and temperature values in the freestream (M e = 12.48 and T e = 594.3 K, respectively) lead to a high-enthalpy ...