Direct Numerical Simulation of hypersonic boundary layers in chemical non-equilibrium
Communication sans acte
Date
2021-08Abstract
The influence of high-temperature effects on compressible wall-bounded turbulence is investigated by means of a direct numerical simulation of a hypersonic, chemically out-of-equilibrium, turbulent boundary layer. The analysis aims at assessing the effects of chemical reactions on turbulence, also by comparing the results with those of a frozen flow. We will present a detailed analysis of the turbulent statistics and near-wall dynamics; the validity of some classical scalings and Reynolds analogy will also be discussed.
Files in this item
- Name:
- DYNFLUID_XXV-ICTAM_2021_PASSIA ...
- Size:
- 427.1Kb
- Format:
- Description:
- Direct numerical simulation of ...
Collections
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteA high-order shock-capturing finite-difference scheme for scale-resolving numerical simulations of hypersonic high-enthalpy flows, involving thermal non-equilibrium effects, is presented. The suitability of the numerical ...
-
Article dans une revue avec comité de lectureA hypersonic, spatially evolving turbulent boundary layer at Mach 12.48 with a cooled wall is analysed by means of direct numerical simulations. At the selected conditions, massive kinetic-to-internal energy conversion ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2021-04)The influence of high-enthalpy effects in hypersonic, spatially developing boundary layers is investigated by means of direct numerical simulations. The flow of a reacting mixture of nitrogen and oxygen over a flat plate ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (Council of the Aeronautical Sciences, 2022-11)A hypersonic turbulent boundary layer over a flat plate is numerically investigated. The large Mach number and temperature values in the freestream (M e = 12.48 and T e = 594.3 K, respectively) lead to a high-enthalpy ...
-
Communication avec actePASSIATORE, Donatella; SCIACOVELLI, Luca; CINNELLA, Paola; PASCAZIO, Giuseppe (3AF, Association Aéronautique et Astronautique de France, 2023-03-29)The dynamics of a shock wave impinging on a freestream-perturbed high-enthalpy boundary layer is investigated by means of direct numerical simulation. The oblique shock impacts on a cooled flat-plate boundary layer with ...