Parametric analysis and machine learning-based parametric modeling of wire laser metal deposition induced porosity
Article dans une revue avec comité de lecture
Auteur
Date
2022-04Journal
International Journal of Material FormingRésumé
Additive manufacturing is an appealing solution to produce geometrically complex parts, difficult to manufacture using traditional technologies. The extreme process conditions, in particular the high temperature, complex interactions and couplings, rich metallurgical transformations and combinatorial deposition trajectories, induce numerous process defects and in particular porosity. Simulating numerically porosity appearance remains extremely complex because of the multiple physics induced by the laser-material interaction, the multiple space and time scales, with a strong impact on the simulation efficiency and performances. Moreover, when analyzing parts build-up by using the wire laser metal deposition —wLMD— technology it can be noticed a significant variability in the porosity size and distribution even when process parameters remain unchanged. For these reasons the present paper aims at proposing an alternative modeling approach based on the use of neural networks to express the porosity as a function of different process parameters that will be extracted from the process analysis.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureLOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (MDPI AG, 2021)For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The ...
-
Article dans une revue avec comité de lectureREILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; CUETO, Elias; DUVAL, Jean Louis; CHINESTA SORIA, Francisco (EDP Sciences, 2021)Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
-
Article dans une revue avec comité de lectureRUNACHER, Antoine; KAZEMZADEH-PARSI, Mohammad-Javad; DI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; AMMAR, Amine; CHINESTA SORIA, Francisco (2023)Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
-
Article dans une revue avec comité de lectureARDUENGO, Javier; HASCOËT, Nicolas; CHINESTA SORIA, Francisco; HASCOET, Jean-Yves (Wroclaw Board of Scientific Technical Societies Federation NOT, 2024-03)Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D ...
-
Article dans une revue avec comité de lectureThis paper presents a data-driven structural health monitoring (SHM) method by the use of so-called reduced-order models relying on an offline training/online use for unidirectional fiber and matrix failure detection in a ...