• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Open-Loop Control System for High Precision Extrusion-Based Bioprinting Through Machine Learning Modeling

Article dans une revue avec comité de lecture
Author
ARDUENGO, Javier
1086798 NANTES UNIVERSITÉ - École Centrale de Nantes [Nantes Univ - ECN]
ccHASCOËT, Nicolas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
HASCOET, Jean-Yves
1086798 NANTES UNIVERSITÉ - École Centrale de Nantes [Nantes Univ - ECN]

URI
http://hdl.handle.net/10985/25490
DOI
10.36897/jme/186044
Date
2024-03
Journal
Journal of Machine Engineering

Abstract

Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing parameters and enables process control through an open-loop system was developed. Through rigorous experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model and the open-loop control system in achieving optimal bioprinting outcomes. © 2024, Editorial Institution of Wrocaw Board of Scientific.

Files in this item

Name:
PIMM_JME_2024_HASCOET.pdf
Size:
3.432Mb
Format:
PDF
Description:
OPEN-LOOP CONTROL SYSTEM FOR ...
View/Open
CC BY-NC
This document is available under CC BY-NC license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Learning data-driven reduced elastic and inelastic models of spot-welded patches 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; ccCUETO, Elias; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (EDP Sciences, 2021)
    Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
  • Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing 
    Article dans une revue avec comité de lecture
    LOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The ...
  • Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; HASCOET, Nicolas; ccCUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
  • Describing and Modeling Rough Composites Surfaces by Using Topological Data Analysis and Fractional Brownian Motion 
    Article dans une revue avec comité de lecture
    ccRUNACHER, Antoine; ccKAZEMZADEH-PARSI, Mohammad-Javad; ccDI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (2023)
    Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
  • On the data-driven modeling of reactive extrusion 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales