Open-Loop Control System for High Precision Extrusion-Based Bioprinting Through Machine Learning Modeling
Article dans une revue avec comité de lecture
Author
Date
2024-03Journal
Journal of Machine EngineeringAbstract
Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing parameters and enables process control through an open-loop system was developed. Through rigorous experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model and the open-loop control system in achieving optimal bioprinting outcomes. © 2024, Editorial Institution of Wrocaw Board of Scientific.
Files in this item
- Name:
- PIMM_JME_2024_HASCOET.pdf
- Size:
- 3.432Mb
- Format:
- Description:
- OPEN-LOOP CONTROL SYSTEM FOR ...
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureREILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; CUETO, Elias; DUVAL, Jean Louis; CHINESTA SORIA, Francisco (EDP Sciences, 2021)Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
-
Article dans une revue avec comité de lectureLOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (MDPI AG, 2021)For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The ...
-
Article dans une revue avec comité de lectureREILLE, Agathe; HASCOET, Nicolas; CUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; GHNATIOS, Chady; AMMAR, Amine; CHINESTA SORIA, Francisco (Elsevier Masson, 2019)The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
-
Article dans une revue avec comité de lectureRUNACHER, Antoine; KAZEMZADEH-PARSI, Mohammad-Javad; DI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; AMMAR, Amine; CHINESTA SORIA, Francisco (2023)Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
-
Article dans une revue avec comité de lectureIBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; GHNATIOS, Chady; AMMAR, Amine; CHINESTA SORIA, Francisco (MDPI, 2020)This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...