Prediction of bead geometry with consideration of interlayer temperature effect for CMT-based wire-arc additive manufacturing
Article dans une revue avec comité de lecture
Author
Date
2021-09Journal
Welding in the WorldAbstract
Cold metal transfer (CMT)–based wire-arc additive manufacturing (WAAM) is increasingly popular for the production of large and complex metallic components due to its high deposition rate, low heat input, and excellent material efficiency. The accurate prediction of the bead geometry is of great importance to enhance the stability of the process and its dimensional accuracy. Besides the wire feed speed (WFS) and travel speed (TS), the interlayer temperature is another key factor in determining the bead geometry because of the heat accumulation in the multilayer deposition. In this paper, considering the varying interlayer temperature, WFS, and TS as inputs, an artificial neural network (ANN) is developed to predict the bead width, height, and contact angle; then, by connecting the ANN model with a bead geometric model, a combined model is established to improve the ANN model. Based on experimental test data, with random combinations of input parameters, the combined model is demonstrated to be able to accurately predict the bead geometry (mean error < 5.1%). The general effect of interlayer temperature on the bead geometry was also investigated by experiment.
Files in this item
- Name:
- LCFC_WW_2021_ZIMMER CHEVRET
- Size:
- 1.255Mb
- Format:
- Description:
- Prediction of bead geometry with ...
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureWANG, Zeya; ZIMMER-CHEVRET, Sandra; LÉONARD, François; ABBA, Gabriel (Springer Science and Business Media LLC, 2021-09)Cold metal transfer (CMT)-based wire-arc additive manufacturing (WAAM) is a promising method for the production of large-scale and complex metallic parts because of its high efficiency, less heat input and low cost. However, ...
-
Off-line path programming for three-dimensional robotic friction stir welding based on Bézier curves Article dans une revue avec comité de lectureKOLEGAIN, Komlan; LEONARD, François; ZIMMER-CHEVRET, Sandra; BEN ATTAR, Amarilys; ABBA, Gabriel (Emerald, 2018)Robotic friction stir welding (RFSW) is an innovative process which enables solid-state welding of aluminum parts using robots. A major drawback of this process is that the robot joints undergo elastic deformation during ...
-
Article dans une revue avec comité de lectureJEMAL, Nejah; ZIMMER-CHEVRET, Sandra; LANGLOIS, Laurent; ABBA, Gabriel (Trans Tech Publications, 2013)Friction stir welding is known for his capability to achieve a linear weld. However, more investigation on a curved friction stir weld trajectory is still required to industrialize this promising process. In the same ...
-
Communication avec acteALLAM, Zakaria; ZIMMER-CHEVRET, Sandra; ABBA, Gabriel; LANGLOIS, Laurent (Ecole des Mines de Saint Etienne, 2012)The robotization of the FSW process is facing two challenges which are to support the amplitude of the tool / workpiece mechanical interaction generated by welding and to apply the process parameters and in particular the ...
-
Communication avec acteFriction Stir Welding (FSW) est considéré comme un procédé de soudage à l’état solide très demandé pour souder des alliages d'aluminium. Au cours des dernières années, les chercheurs se sont orientés vers l’industrialisation ...