• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Midpoint and endpoint characterization factors for mineral resource dissipation: methods and application to 6000 data sets

Article dans une revue avec comité de lecture
Author
CHARPENTIER PONCELET, Alexandre
24493 Institut des Sciences Moléculaires [ISM]
LOUBET, Philippe
24493 Institut des Sciences Moléculaires [ISM]
HELBIG, Christoph
BEYLOT, Antoine
18404 Bureau de Recherches Géologiques et Minières [BRGM]
MULLER, Stéphanie
18404 Bureau de Recherches Géologiques et Minières [BRGM]
VILLENEUVE, Jacques
18404 Bureau de Recherches Géologiques et Minières [BRGM]
ccLARATTE, Bertrand
1002421 Institut de Mécanique et d'Ingénierie [I2M]
THORENZ, Andrea
TUMA, Axel
SONNEMANN, Guido
24493 Institut des Sciences Moléculaires [ISM]

URI
http://hdl.handle.net/10985/22703
DOI
10.1007/s11367-022-02093-2
Date
2022-09
Journal
The International Journal of Life Cycle Assessment

Abstract

Abstract Purpose The accessibility to most metals is crucial to modern societies. In order to move towards more sustainable use of metals, it is relevant to reduce losses along their anthropogenic cycle. To this end, quantifying dissipative flows of mineral resources and assessing their impacts in life cycle assessment (LCA) has been a challenge brought up by various stakeholders in the LCA community. We address this challenge with the extension of previously developed impact assessment methods and evaluating how these updated methods compare to widely used impact assessment methods for mineral resource use. Methods Building on previous works, we extend the coverage of the average dissipation rate (ADR) and lost potential service time (LPST) methods to 61 metals. Midpoint characterization factors are computed using dynamic material flow analysis results, and endpoint characterization factors, by applying the market price of metals as a proxy for their value. We apply these methods to metal resource flows from 6000 market data sets along with the abiotic depletion potential and ReCiPe 2016 methods to anticipate how the assessment of dissipation using the newly developed methods might compare to the latter two widely used ones. Results and discussion The updated midpoint methods enable distinguishing between 61 metals based on their global dissipation patterns once they have been extracted from the ground. The endpoint methods further allow differentiating between the value of metals based on their annual average market prices. Metals with a high price that dissipate quickly have the highest endpoint characterization factors. The application study shows that metals with the largest resource flows are expected to have the most impacts with the midpoint ADR and LPST methods, metals that are relatively more expensive have a greater relative contribution to the endpoint assessment. Conclusion The extended ADR and LPST methods provide new information on the global dissipation patterns of 61 metals and on the associated potentially lost value for humans. The methods are readily applicable to resource flows in current life cycle inventories. This new information may be complementary to that provided by other impact assessment methods addressing different impact pathways when used in LCA studies. Additional research is needed to improve the characterization of the value of metals for society and to extend the methods to more resources.

Files in this item

Name:
I2M_IJLC_2022_LARATTE.pdf
Size:
2.245Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • Losses and lifetimes of metals in the economy 
    Article dans une revue avec comité de lecture
    CHARPENTIER PONCELET, Alexandre; HELBIG, Christoph; LOUBET, Philippe; BEYLOT, Antoine; MULLER, Stéphanie; VILLENEUVE, Jacques; ccLARATTE, Bertrand; THORENZ, Andrea; TUMA, Axel; SONNEMANN, Guido (Springer Nature, 2022-05-19)
    The consumption of most metals continues to rise following ever-increasing population growth, affluence and technological development. Sustainability considerations urge greater resource efficiency and retention of metals ...
  • Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals 
    Article dans une revue avec comité de lecture
    CHARPENTIER-PONCELET, Alexandre; HELBIG, Christoph; LOUBET, Philippe; BEYLOT, Antoine; MULLER, Stéphanie; VILLENEUVE, Jacques; ccLARATTE, Bertrand; THORENZ, Andrea; TUMA, Axel; SONNEMANN, Guido (Wiley, 2021)
    The dissipation of metals leads to potential environmental impacts, usually evaluated for product systems with life cycle assessment. Dissipative flows of metals become inaccessible for future users, going against the ...
  • Linkage of impact pathways to cultural perspectives to account for multiple aspects of mineral resource use in life cycle assessment 
    Article dans une revue avec comité de lecture
    CHARPENTIER-PONCELET, Alexandre; BEYLOT, Antoine; LOUBET, Philippe; ccLARATTE, Bertrand; MULLER, Stéphanie; VILLENEUVE, Jacques; SONNEMANN, Guido (Elsevier BV, 2022)
    Important advances have been made to define the multiple impact pathways relating mineral resource use to the area of protection (AoP) natural resources in life cycle assessment (LCA). Yet, the link between stakeholders’ ...
  • Towards interim characterization factors to account for the dissipation of non-energetic abiotic resource in life cycle assessment 
    Communication avec acte
    ccCHARPENTIER PONCELET, Alexandre; LOUBET, Philippe; ccLARATTE, Bertrand; MULLER, Stéphanie; VILLENEUVE, Jacques; SONNEMANN, Guido (2020)
    Towards interim characterization factors to account for the dissipation of non-energetic abiotic resource in life cycle assessment
  • Development of a conceptual framework and its associated indicator to take the dissipation of non- energetic abiotic resources into account within Life Cycle Assessment (LCA) 
    Communication avec acte
    CHARPENTIER-PONCELET, Alexandre; SONNEMANN, Guido; ccLARATTE, Bertrand; LOUBET, Philippe; MULLER, Stéphanie; VILLENEUVE, Jacques (2019)
    Life Cycle Assessment (LCA) is a tool allowing to assess environmental impacts of a product or service over its whole life cycle. It may serve as a support for product eco-design, policy- makers and decision-takers in ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales