• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

An empirical mean-field model of symmetry-breaking in a turbulent wake

Article dans une revue avec comité de lecture
Auteur
CALLAHAM, Jared L.
545712 Department of Mechanical Engineering [University of Washington]
RIGAS, Georgios
69530 Imperial College London
ccLOISEAU, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]
BRUNTON, Steven L.
545712 Department of Mechanical Engineering [University of Washington]

URI
http://hdl.handle.net/10985/23022
DOI
10.1126/sciadv.abm4786
Date
2022-05-11
Journal
Science Advances

Résumé

Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be disentangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high–Reynolds number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable turbulent flows from experimental measurements, with broad implications for other multiscale systems.

Fichier(s) constituant cette publication

Nom:
DYNFLUID_SCIADV_2022_LOISEAU.pdf
Taille:
2.666Mo
Format:
PDF
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • PySINDy: A comprehensive Python package for robust sparse system identification 
    Article dans une revue avec comité de lecture
    KAPTANOGLU, Alan; DE SILVA, Brian; FASEL, Urban; KAHEMAN, Kadierdan; GOLDSCHMIDT, Andy; CALLAHAM, Jared; DELAHUNT, Charles; NICOLAOU, Zachary; CHAMPION, Kathleen; KUTZ, J.; BRUNTON, Steven; ccLOISEAU, Jean-Christophe (The Open Journal, 2022-01)
    Automated data-driven modeling, the process of directly discovering the governing equations of a system from data, is increasingly being used across the scientific community. PySINDy is a Python package that provides tools ...
  • On the role of nonlinear correlations in reduced-order modelling 
    Article dans une revue avec comité de lecture
    CALLAHAM, Jared L.; BRUNTON, Steven L.; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2022-03)
    This work investigates nonlinear dimensionality reduction as a means of improving the accuracy and stability of reduced-order models of advection-dominated flows. Nonlinear correlations between temporal proper orthogonal ...
  • Nonlinear stochastic modelling with Langevin regression 
    Article dans une revue avec comité de lecture
    CALLAHAM, J. L.; RIGAS, G.; BRUNTON, S. L.; ccLOISEAU, Jean-Christophe (The Royal Society Publishing, 2021-06)
    Many physical systems characterized by nonlinear multiscale interactions can be modelled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative ...
  • From the POD-Galerkin method to sparse manifold models 
    Chapitre d'ouvrage scientifique
    BRUNTON, Steven; NOACK, Bernd; ccLOISEAU, Jean-Christophe (De Gruyter, 2021-06)
    Reduced-order models are essential for the accurate and efficient prediction, estimation, and control of complex systems. This is especially true in fluid dynamics, where the fully resolved state space may easily contain ...
  • PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data 
    Article dans une revue avec comité de lecture
    DE SILVA, Brian; CHAMPION, Kathleen; QUADE, Markus; KUTZ, J. Nathan; BRUNTON, Steven; ccLOISEAU, Jean-Christophe (Open Journals, 2020)
    Scientists have long quantified empirical observations by developing mathematical models that characterize the observations, have some measure of interpretability, and are capable of making predictions. Dynamical systems ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales