Data Completion, Model Correction and Enrichment Based on Sparse Identification and Data Assimilation
Article dans une revue avec comité de lecture
Author

564849 ESI Group [ESI Group]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
Abstract
Many models assumed to be able to predict the response of structural systems fail to efficiently accomplish that purpose because of two main reasons. First, some structures in operation undergo localized damage that degrades their mechanical performances. To reflect this local loss of performance, the stiffness matrix associated with the structure should be locally corrected. Second, the nominal model is sometimes too coarse grained for reflecting all structural details, and consequently, the predictions are expected to deviate from the measurements. In that case, there is no small region of the model that needs to be repaired, but the entire domain needs to be repaired; therefore, the entire structure-stiffness matrix should be corrected. In the present work, we propose a methodology for locally correcting or globally enriching the models from collected data, which is, upon its turn, completed beyond the sensor’s location. The proposed techniques consist in the first case of an L1-minimization procedure that, with the support of data, aims at the same time period to detect the damaged zone in the structure and to predict the correct solution. For the global enrichment, instead, the methodology consists of an L2-minimization procedure with the support of measurements. The results obtained showed, for the local problem, a correction up to 90% with respect to the initially incorrectly predicted displacement of the structure, and for the global one, a correction up to 60% was observed (this results concern the problems considered in the present study, but they depend on different factors, such as the number of data used, the geometry or the intensity of the damage). The benefits and potential of such techniques are illustrated on four different problems, showing the large generality and adaptability of the methodology.
Files in this item
- Name:
- PIMM_AS_2022_DI-LORENZO.pdf
- Size:
- 6.429Mb
- Format:
- Description:
- Data Completion, Model Correction ...
- Embargoed until:
- 2023-03-25
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureREILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; CUETO, Elias; DUVAL, Jean Louis; CHINESTA, Francisco (EDP Sciences, 2021)Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
-
Article dans une revue avec comité de lectureCHAMPANEY, Victor; CHINESTA, Francisco; CUETO, Elias (Springer Science and Business Media LLC, 2022-04-05)Smart manufacturing implies creating virtual replicas of the processing operations, taking into account the material dimension and its multi-physics transformation when forming processes operate. Performing efficient, that ...
-
Article dans une revue avec comité de lectureAMORES, Víctor J.; MONTÁNS, Francisco J.; CUETO, Elías; CHINESTA, Francisco (Frontiers Media SA, 2022-05)We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...
-
Article dans une revue avec comité de lectureLOREAU, Tanguy; CHAMPANEY, Victor; HASCOET, Nicolas; LAMBARRI, Jon; MADARIETA, Mikel; GARMENDIA, Iker; CHINESTA, Francisco (Springer Science and Business Media LLC, 2022-04)Additive manufacturing is an appealing solution to produce geometrically complex parts, difficult to manufacture using traditional technologies. The extreme process conditions, in particular the high temperature, complex ...
-
Article dans une revue avec comité de lectureEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor; CHINESTA, Francisco; MERAGHNI, Fodil (Elsevier, 2022-09)In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...