• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Damage identification technique by model enrichment for structural elastodynamic problems

Article dans une revue avec comité de lecture
Author
ccDI LORENZO, Daniele
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
RODRIGUEZ, Sebastian
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCHAMPANEY, Laurent
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccGERMOSO, Claudia
580476 Instituto Tecnológico de Santo Domingo [INTEC [República Dominicana]]
ccBERINGHIER, Marianne
118112 Institut Pprime [UPR 3346] [PPrime [Poitiers]]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/25610
DOI
10.1016/j.rineng.2024.102389
Date
2024-06
Journal
Results in Engineering

Abstract

Structural Health Monitoring (SHM) techniques are key to monitor the health state of engineering structures, where damage type, location and severity are to be estimated by applying sophisticated techniques to signals measured by sensors. However, very localized damage detection algorithms applied to dynamics problems when dealing with rigid structures at low-frequency range remains still a big challenge. The last due to the low influence of very localized damage on the overall response of the structure (Saint-Venant principle). In this context, in the present work, we propose a methodology for locally correcting the models from collected data for elastodynamics problems at low-frequency range which is able to predict very localized damage. The proposed technique consists in enriching the structural model in a sparse way and solving the identification problem in the frequency domain, where the influence of damage over a large frequency band is exploited to improve the prediction of the damage location. The advantages and potential of the proposed technique are illustrated for the damage detection in a plate problem, demonstrating the advantages of the method in detecting very localized damage. The proposed technique is limited to a methodological description, and further developments should be considered to approach its applicability in an industrial scenario.

Files in this item

Name:
PIMM_RE_2024_DI-LORENZO.pdf
Size:
4.805Mb
Format:
PDF
Description:
Damage identification technique ...
View/Open
CC BY-NC-ND
This document is available under CC BY-NC-ND license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Data Completion, Model Correction and Enrichment Based on Sparse Identification and Data Assimilation 
    Article dans une revue avec comité de lecture
    DI LORENZO, Daniele; CHAMPANEY, Victor; GERMOSO, Claudia; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI AG, 2022-07)
    Many models assumed to be able to predict the response of structural systems fail to efficiently accomplish that purpose because of two main reasons. First, some structures in operation undergo localized damage that degrades ...
  • Optimization of precharge placement in sheet molding compound process 
    Article dans une revue avec comité de lecture
    ccEBRAHIMIAN, Fariba; RODRIGUEZ, Sebastian; ccDI LORENZO, Daniele; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-06-01)
    AbstractThis study aims to provide precise predictions for the compression of reinforced polymers during the sheet Molding Compound (SMC) process, ensuring the attainment of a predefined structure while preventing material ...
  • Describing and Modeling Rough Composites Surfaces by Using Topological Data Analysis and Fractional Brownian Motion 
    Article dans une revue avec comité de lecture
    ccRUNACHER, Antoine; ccKAZEMZADEH-PARSI, Mohammad-Javad; ccDI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (2023)
    Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
  • Optimal velocity planning based on the solution of the Euler-Lagrange equations with a neural network based velocity regression 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; ccDI LORENZO, Daniele; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (American Institute of Mathematical Sciences (AIMS), 2024-07)
    Trajectory optimization is a complex process that includes an infinite number of possibilities and combinations. This work focuses on a particular aspect of the trajectory optimization, related to the optimization of a ...
  • Harmonic-Modal Hybrid Reduced Order Model for the Efficient Integration of Non-Linear Soil Dynamics 
    Article dans une revue avec comité de lecture
    GERMOSO, Claudia; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis. Soil response analysis, and more concretely laboratory data, indicate that the stress-strain relationship of soils ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales