• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Recurrent Encoder: an end-to-end network to model magnetoencephalography at scale

Article dans une revue avec comité de lecture
Auteur
CHEHAB, Omar
419361 Université Paris-Saclay
DEFOSSEZ, Alexandre
267305 Facebook AI Research [Paris] [FAIR]
GRAMFORT, Alexandre
118511 Centre Inria de Saclay
419361 Université Paris-Saclay
KING, Jean-Remi
267305 Facebook AI Research [Paris] [FAIR]
59704 École normale supérieure - Paris [ENS-PSL]
ccLOISEAU, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/23068
DOI
10.51628/001c.38668
Date
2022-10
Journal
Neurons, Behavior, Data analysis, and Theory

Résumé

Understanding how the brain responds to sensory inputs from non-invasive brain recordings like magnetoencephalography (MEG) can be particularly challenging: (i) the high-dimensional dynamics of mass neuronal activity are notoriously difficult to model, (ii) signals can greatly vary across subjects and trials and (iii) the relationship between these brain responses and the stimulus features is non-trivial. These challenges have led the community to develop a variety of preprocessing and analytical (almost exclusively linear) methods, each designed to tackle one of these issues. Instead, we propose to address these challenges through a specific end-to-end deep learning architecture, trained to predict the MEG responses of multiple subjects at once. We successfully test this approach on a large cohort of MEG recordings acquired during a one-hour reading task. Our Deep Recurrent Encoder (DRE) reliably predicts MEG responses to words with a three-fold improvement over classic linear methods. We further describe a simple variable importance analysis to investigate the MEG representations learnt by our model and recover the expected evoked responses to word length and word frequency. Last, we show that, contrary to linear encoders, our model captures modulations of the brain response in relation to baseline fluctuations in the alpha frequency band. The quantitative improvement of the present deep learning approach paves the way to a better characterization of the complex dynamics of brain activity from large MEG datasets.

Fichier(s) constituant cette publication

Nom:
DYNFLUID_NBDT_2022_LOISEAU.pdf
Taille:
9.060Mo
Format:
PDF
Description:
Deep Recurrent Encoder: an ...
Fin d'embargo:
2023-05-12
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; LERICHE, Emmanuel; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2014)
    The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate ...
  • Successive bifurcations in a fully three-dimensional open cavity flow 
    Article dans une revue avec comité de lecture
    PICELLA, Francesco; LUSSEYRAN, F; CHERUBINI, Stefania; PASTUR, L; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)
    The transition to unsteadiness of a three-dimensional open cavity flow is investigated using the joint application of direct numerical simulations and fully three-dimensional linear stability analyses, providing a clear ...
  • Influence of freestream turbulence on the flow over a wall roughness 
    Article dans une revue avec comité de lecture
    BUCCI, Michele Alessandro; CHERUBINI, Stefania; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe (American Physical Society (APS), 2021)
    The effect of freestream turbulence on the dynamics of an incompressible flow past a cylindrical roughness element in subcritical conditions (i.e., for Reynolds numbers below the onset of linear instability) has been ...
  • System Identification of Two-Dimensional Transonic Buffet 
    Article dans une revue avec comité de lecture
    SANSICA, Andrea; KANAMORI, Masashi; HASHIMOTO, Atsushi; ccLOISEAU, Jean-Christophe; ccROBINET, Jean-Christophe (American Institute of Aeronautics and Astronautics (AIAA), 2022-02)
    When modeled within the unsteady Reynolds-Averaged Navier-Stokes framework, the shock-wave dynamics on a two-dimensional aerofoil at transonic buffet conditions is char- acterized by time-periodic oscillations. Given the ...
  • Global stability, sensitivity and passive control of low-Reynolds-number flows around NACA 4412 swept wings 
    Article dans une revue avec comité de lecture
    ccNASTRO, Gabriele; ccROBINET, Jean-Christophe; ccLOISEAU, Jean-Christophe; ccPASSAGGIA, Pierre-Yves; ccMAZELLIER, Nicolas (Cambridge University Press, 2023-01)
    The stability and sensitivity of two- and three-dimensional global modes developing on steady spanwise-homogeneous laminar separated flows around NACA 4412 swept wings are numerically investigated for different Reynolds ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales