• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supercritical CO2‐assisted extrusion foaming: A suitable process to produce very lightweight acrylic polymer micro foams

Article dans une revue avec comité de lecture
Author
HAURAT, Margaux
ccSAUCEAU, Martial
BAILLON, Fabien
ccLE BARBENCHON, Louise
1002421 Institut de Mécanique et d'Ingénierie [I2M]
PEDROS, Matthieu
DUMON, Michel

URI
http://hdl.handle.net/10985/23143
DOI
10.1002/app.53277
Date
2022-11-15
Journal
Journal of Applied Polymer Science

Abstract

A strategy of CO2-assisted extrusion foaming of PMMA-based materials was established to minimize both foam density and porosities dimension. First a highly CO2-philic block copolymer (MAM: PMMA-PBA-PMMA) was added in PMMA in order to improve CO2 saturation before foaming. Then the extruding conditions were optimized to maximize CO2 uptake and prevent coalescence. The extruding temperature reduction led to an increase of pressure in the barrel, favorable to cell size reduction. With the combination of material formulation and extruding strategy, very lightweight homogeneous foams with small porosities have been produced. Lightest PMMA micro foams (ρ = 0.06 g cm−3) are demonstrated with 7 wt% CO2 at 130°C and lightest blend micro foams (ρ = 0.04 g cm−3) are obtained at lower temperature (110°C, 7.7 wt% CO2). If MAM allows a reduction of Tfoaming, it also allows a much better cell homogeneity, an increase in cell density (e.g., from 3.6 107 cells cm−3 to 2 to 6 108 cells cm−3) and an overall decrease in cell size (from 100 to 40 μm). These acrylic foams produced through scCO2-assisted extrusion has a much lower density than those ever produced in batch (ρ ≥ 0.2 g cm−3).

Files in this item

Name:
I2M_AP_Lebarbenchon_2022.pdf
Size:
2.980Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • On the dynamic performance of additively manufactured visco-elastic meta-materials 
    Article dans une revue avec comité de lecture
    ccLE BARBENCHON, Louise; ccLISSNER, Maria (Elsevier BV, 2024-03)
    Additive manufacturing (AM) has revolutionized the production of structures with tailored material properties, including elastomer polyurethanes (EPU) which exhibit exceptional mechanical performance. EPU possesses unique ...
  • Influence of the microstructure on the compressive behaviour of porous aluminas: From microstructural characterisation to fracture mechanisms 
    Article dans une revue avec comité de lecture
    ccHENRY, Quentin; ccVIOT, Philippe; ccLE BARBENCHON, Louise; ccCOSCULLUELA, Antonio; ccKOPP, Jean-Benoit (Elsevier BV, 2024-06)
    The mechanical response of porous aluminas under compressive loading was studied and compared with the fracture mechanisms. Aluminas with a wide range of pore sizes and porosity rates (1–60%) were produced to deconvolve ...
  • A review on the mechanical behaviour of microcellular and nanocellular polymeric foams: What is the effect of the cell size reduction? 
    Article dans une revue avec comité de lecture
    ccLE BARBENCHON, Louise; ccKOPP, Jean-Benoit (SAGE Publications, 2024-05-24)
    Research on nanocellular foams is motivated in part by the promise of physical properties, in particular mechanical properties, that can go beyond the classical mechanical framework. However, due to the difficulty in ...
  • Influence of the loading regime on the uniaxial compressive behaviour of density graded Citrus Maxima peel 
    Article dans une revue avec comité de lecture
    ccLE BARBENCHON, Louise (Elsevier BV, 2023-11)
    To conceive more efficient protective structures, it is possible to draw inspiration from natural structures. However, the origin of the mechanical absorption properties of natural structures is not always clear. Among the ...
  • Elastically anisotropic architected metamaterials with enhanced energy absorption 
    Article dans une revue avec comité de lecture
    JIANG, Huan; BEDNARCYK, Brett A.; ccLE BARBENCHON, Louise; CHEN, Yanyu (Elsevier BV, 2023-11)
    Materials and structures featuring a combination of high stiffness, strength, and energy absorption are highly demanded. Current studies are focused on the improvement of these mechanical properties without considering ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales