• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transfer Learning to close the gap between experimental and numerical data

Communication sans acte
Author
ccPOSTORINO, Hadrien
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccMONTEIRO, Eric
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccREBILLAT, Marc
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/23347
Date
2022-05

Abstract

The deployment of Deep Learning (DL) strategies is particularly advantageous in Structural Health Monitoring (SHM) based of lamb Wave (LW) propagation due to the high quantity of data collected by the network of piezoelectric transducers (PZT) during all the life cycle of the composite structure. However, such strategies rely on large training databases, difficult to collect experimentally. The use of numerical simulations faces that issue, but the modelsnever fit perfectly to the real structures, leading to error of diagnostic. We propose here to use Transfer Learning (TL) approaches to reduce the predictions errors of a Convolutional Neural Network (CNN) trained with numerical data. The network predicts the size and the position of a damage on a composite plate equipped with PZT. It is trained on a large source database composed of different damage scenarios on a composite plate. A second smaller target database is generated with small variations on the mechanic properties and PZT positions to simulate manufacturing uncertainties. Those uncertainties lead to prediction errors of the CNN. A Domain Adaptation (DA) based on Optimal Transport (OT) is used to project the target data on the source domain and therefore reduces the predictions error of the CNN. These TL approach should allow us to close the gap between experimental and numerical data.

Files in this item

Name:
PIMM_ICCBMA22_2022_POSTORINO.pdf
Size:
258.1Kb
Format:
PDF
Description:
Transfer Learning to close the ...
Embargoed until:
2022-11-24
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Towards an industrial deployment of PZT based SHM processes: A dedicated metamodel for Lamb wave propagation 
    Communication avec acte
    POSTORINO, Hadrien; REBILLAT, Marc; MONTEIRO, Eric; MECHBAL, Nazih (2020)
    Numerical simulations of Structural Health Monitoring processes based on wave propagation can be very costly in terms of computation time, especially for complex aeronautic composite structures, and therefore strongly ...
  • Experimental Damage Localization and Quantification with a Numerically Trained Convolutional Neural Network 
    Communication avec acte
    POSTORINO, Hadrien; ccMONTEIRO, Eric; ccREBILLAT, Marc; ccMECHBAL, Nazih (Springer International Publishing, 2022-06)
    Structural Health Monitoring (SHM) based on Lamb wave propagation is a promising technology to optimize maintenance costs, enlarge service life and improve safety of aircrafts. A large quantity of data is collected during ...
  • Sensorless Nonlinear Stroke Controller for an Implantable, Undulating Membrane Blood Pump 
    Communication avec acte
    SCHEFFLER, Mattias; MECHBAL, Nazih; REBILLAT, Marc; MONTEIRO, Eric; BARABINO, Nicolas (IEEE, 2019)
    This paper describes an original methodology to operate a new nonlinear vibrating membrane pump, actuated by a moving magnet actuator without the use of a motion sensor, in the scope of cardiac assistance. A nonlinear ...
  • INVESTIGATION OF NONLINEAR LAMB WAVE/DAMAGE INTERACTION: NUMERICAL AND EXPERIMENTAL APPROACHES 
    Communication avec acte
    LI, Xixi; MONTEIRO, ERIC; REBILLAT, Marc; GUSKOV, Mikhail; MECHBAL, Nazih (A. Benjeddou, N. Mechbal and J.F. Deü, 2019)
    One of the most important issues in engineering is the monitoring and the early detection of structural damages to prevent catastrophic failures. This process is referred to as Structural Health Monitoring and is expected ...
  • Systems and methods for controlling and implantable blood pump 
    Brevet
    SCHEFFLER, Mattias; BARABINO, Nicolas; ccREBILLAT, Marc; ccMONTEIRO, Eric; ccMECHBAL, Nazih (2022-03)
    Systems and methods for controlling an implantable pump are provided. For example, the exemplary controller for controlling the implantable pump may only rely on the actuator's current measurement. The controller is robust ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales