• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic CAD Assemblies Generation by Linkage Graph Overlay for Machine Learning Applications

Communication avec acte
Auteur
VERGEZ, Lucas
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
POLETTE, Arnaud
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
PERNOT, Jean-Phillipe
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/23482
DOI
10.14733/cadconfp.2021.46-50
Date
2021-07-05

Résumé

Enlarging 3D model databases by shape synthesis is a large field of research. Indeed, the use of machine learning techniques requires a huge amount of labeled CAD models, and it is therefore crucial to rely on large and varied databases. Most of existing works in shape synthesis focus on everyday life objects generation [1]. However, these methods often do not work on assemblies composed of several CAD models, and it is the aim of this paper to develop a new shape synthesis method to enlarge existing CAD assembly databases. Today, there exist lots of free databases of non-labeled CAD models (e.g. GrabCAD, 3D Warehouse, Turbosquid) often available as STEP or IGES files. Unfortunately, very few of these databases are labeled. Other databases like PartNet [2] and ShapeNet [3] are currently labeled by crowdsourcing, but they do not contain complex mechanical assemblies. Current works in shape synthesis often use auto-encoders to generate new coherent CAD assemblies [4]. Moreover, there are probabilistic models to create diversity in large 3D Database [5] or to classify 3D assemblies [6]. Those techniques often use linkage graphs [7] to classify and generate new coherent assemblies. Furthermore, information within the linkage graphs differs according to the method, and those graphs are not suitable for complex CAD assemblies like hydraulic pumps. But the main issue of all methods is still that those databases have to be labelled. The method explained in this paper consists in creating new labeled CAD assemblies from existing ones by linkage graph overlay. Here, the STEP file format has been adopted in order to be the most reproductible and to be adaptable. The linkage graphs are automatically created thanks to the identification of the linkages between the components. Indeed, linkages are not included in the STEP files and they need to be computed. Theses linkage graphs are then analyzed and components with similar linkages are detected. Finally, once the similarities detected, the corresponding components can be exchanged to created new assemblies for which the labels can be directly inherited from the source assemblies. The contribution is threefold: (i) a method to create linkage graphs from existing non-labelled CAD assemblies; (ii) a method to recognize basic components using linkage graphs; (iii) a smart overlay method to replace some components while keeping the coherence between all the components of the assembly. The algorithm has been implemented in Python on FreeCAD and it has been tested on several test cases. Figure 1 shows the overview of the method, from the graph synthesis to the components overlay, finishing with the replacement of the components. The results are presented and discussed, and a conclusion ends this extended abstract while discussing the next steps.

Fichier(s) constituant cette publication

Nom:
LISPEN_CAD_2021_PERNOT.pdf
Taille:
576.5Ko
Format:
PDF
Description:
Conférence internationale
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Automatic CAD Assemblies Generation by Linkage Graph Overlay for Machine Learning Applications 
    Article dans une revue avec comité de lecture
    VERGEZ, Lucas; POLETTE, Arnaud; PERNOT, Jean-Philippe (CAD Solutions, LLC, 2021-11-29)
    This paper introduces an approach to synthetize new CAD assemblies from existing STEP files. The algorithm first generates linkage graph by detecting linkage between components. Then it detects linkages similarities ...
  • Survey on the View Planning Problem for Reverse Engineering and Automated Control Applications 
    Article dans une revue avec comité de lecture
    PEUZIN-JUBERT, Manon; POLETTE, Arnaud; NOZAIS, Dominique; MARI, Jean-Luc; PERNOT, Jean-Philippe (Elsevier BV, 2021-12)
    At present, optical sensors are being widely used to realize high quality control or reverse engineering of products, systems, buildings, environments or human bodies. Although the intrinsic characteristics of such ...
  • SMA-Net: Deep learning-based identification and fitting of CAD models from point clouds 
    Article dans une revue avec comité de lecture
    HU, Sijie; ccARNAUD, POLETTE; ccPERNOT, Jean-Philippe (Springer Science and Business Media LLC, 2022-04-13)
    Identifcation and ftting is an important task in reverse engineering and virtual/augmented reality. Compared to the traditional approaches, carrying out such tasks with a deep learning-based method have much room to ...
  • Simulated annealing-based fitting of CAD models to point clouds of mechanical parts’ assemblies 
    Article dans une revue avec comité de lecture
    ccSHAH GHAZANFAR, Ali; POLETTE, Arnaud; PERNOT, Jean-Philippe; GIANNINI, Franca; MONTI, Marina (Springer Science and Business Media LLC, 2020-02-18)
    This paper introduces a new ftting approach to allow an efcient part-by-part reconstruction or update of editable CAD models fitting the point cloud of a digitized mechanical parts′ assembly. The idea is to make use ...
  • User-Driven Computer-Assisted Reverse Engineering of Editable CAD Assembly Models 
    Article dans une revue avec comité de lecture
    ccSHAH GHAZANFAR, Ali; POLETTE, Arnaud; PERNOT, Jean-Philippe; GIANNINI, Franca; MONTI, Marina (ASME, 2021-12-16)
    This paper introduces a novel reverse engineering (RE) technique for the reconstruction of editable computer-aided design (CAD) models of mechanical parts’ assemblies. The input is a point cloud of a mechanical parts’ ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales