• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites

Article dans une revue avec comité de lecture
Author
JIANG, Jindong
107452 Laboratoire de Conception Fabrication Commande [LCFC]
WU, Jiajun
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CHEN, Qiang
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/23502
DOI
10.1016/j.cma.2023.115972
Date
2023-05
Journal
Computer Methods in Applied Mechanics and Engineering

Abstract

Elements of the periodic homogenization framework and deep neural network were seamlessly connected for the first time to construct a new micromechanics theory for thermoconductive composites called physically informed Deep Homogenization Network (DHN). This method utilizes a two-scale expansion of the temperature field of spatially uniform composites in terms of macroscopic and fluctuating contributions. The latter is estimated using deep neural network layers. The DHN is trained on a set of collocation points to obtain the fluctuating temperature field over the unit cell domain by minimizing a cost function given in terms of residuals of strong form steady-state heat conduction governing differential equations. Novel use of a periodic layer with several independent periodic functions with adjustable training parameters ensures that periodic boundary conditions of temperature and temperature gradients at the unit cell edges are exactly satisfied. Automatic differentiation is utilized to correctly compute the fluctuating temperature gradients. Homogenized properties and local temperature and gradient distributions of unit cells reinforced by unidirectional fiber or weakened by a hole are compared with finite-element reference results, demonstrating remarkable correlation but without discontinuities associated with temperature gradient distributions in the finite-element simulations. We also illustrate that the DHN enhanced with transfer learning provides a substantially more efficient and accurate simulation of multiple random fiber distributions relative to training the network from scratch.

Files in this item

Name:
LEM3_CMAME_2023_MERAGHNI.pdf
Size:
10.64Mb
Format:
PDF
Embargoed until:
2023-12-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Homogenization of size-dependent multiphysics behavior of nanostructured piezoelectric composites with energetic surfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; CHATZIGEORGIOU, George; MERAGHNI, Fodil; JAVILI, Ali (Elsevier BV, 2022)
    Surface piezoelectricity considering the extended Gurtin--Murdoch coherent interface model has been incorporated into the composite cylinder assemblage (CCA), generalized self-consistent method (GSCM), as well as the ...
  • Recursive multiscale homogenization of multiphysics behavior of fuzzy fiber composites reinforced by hollow carbon nanotubes 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; MERAGHNI, Fodil; CHATZIGEORGIOU, George (SAGE, 2022)
    Fuzzy fibers are fibers enhanced in terms of multiphysics properties with radially oriented carbon nanotubes grown on their surface through the chemical deposition process. For the first time, this paper attempts to present ...
  • Extended Mean-Field Homogenization of Viscoelastic-Viscoplastic Polymer Composites Undergoing Hybrid Progressive Degradation Induced by Interface Debonding and Matrix Ductile Damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; CHATZIGEORGIOU, George; MERAGHNI, Fodil (Elsevier, 2020)
    In this contribution, a probabilistic micromechanics damage framework is presented to predict the macroscopic stress-strain response and progressive damage in unidirectional glass-reinforced thermoplastic polymer composites. ...
  • Extended mean-field homogenization of unidirectional piezoelectric nanocomposites with generalized Gurtin-Murdoch interfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2022-12)
    This paper presents for the first time an extended Mori-Tanaka approach aimed at identifying the little-explored piezoelectric response of unidirectional nanoporous composites with energetic surfaces. The interface is ...
  • Combination of mean-field micromechanics and cycle jump technique for cyclic response of PA66/GF composites with viscoelastic–viscoplastic and damage mechanisms 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ROBERT, Gilles; ccMERAGHNI, Fodil (Springer Science and Business Media LLC, 2023-01)
    An accelerated micromechanics framework based on the extended Mori–Tanaka transformation field analysis (TFA) and cycle jump technique is proposed to predict the homogenized response of short glass fiber-reinforced polyamide ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales