• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian model-scenario averaged predictions of compressor cascade flows under uncertain turbulence models

Article dans une revue avec comité de lecture
Auteur
ccDE ZORDO-BANLIAT, Maximilien
1003434 Arts et Métiers Sciences et Technologies
134975 Laboratoire de Dynamique des Fluides [DynFluid]
MERLE, Xavier
134975 Laboratoire de Dynamique des Fluides [DynFluid]
ccDERGHAM, Grégory
505477 Safran Tech
ccCINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/23746
DOI
10.1016/j.compfluid.2020.104473
Date
2020-04
Journal
Computers and Fluids

Résumé

The Reynolds-Averaged Navier-Stokes (RANS) equations represent the computational workhorse for engineering design, despite their numerous flaws. Improving and quantifying the uncertainties associated with RANS models is particularly critical in view of the analysis and optimization of complex turbomachinery flows. In this work, we use Bayesian inference for assimilating data into RANS models for the following purposes: (i) updating the model closure coefficients for a class of turbomachinery flows, namely a compressor cascade; (ii) quantifying the parametric uncertainty associated with closure coefficients of RANS models and (iii) quantifying the uncertainty associated with the model structure and the choice of the calibration dataset based on an ensemble of concurrent models and calibration scenarios. Inference of the coefficients of three widely employed RANS models is carried out from high-fidelity LES data for the NACA65 V103 compressor cascade [1, 2]. Posterior probability distributions of the model coefficients are collected for various calibration scenarios, corresponding to different values of the flow angle at inlet. The Maximum A Posteriori estimates of the coefficients differ from the nominal values and depend on the scenario. A recently proposed Bayesian mixture approach, namely, Bayesian Model-Scenario Averaging (BMSA) [3, 4], is used to build a prediction model that takes into account uncertainties associated with alternative model forms and with sensitivity to the calibration scenario. Stochastic predictions are presented for the turbulent flow around the NACA65 V103 cascade at mildly and severe off-design conditions. The results show that BMSA generally yields more accurate solutions than the baseline RANS models and succeeds well in providing an estimate for the predictive uncertainty intervals, provided that a sufficient diversity of scenarios and models is included in the mixture.

Fichier(s) constituant cette publication

Nom:
DYNFLUID_CF_2020_DE-ZORDO-BANL ...
Taille:
7.159Mo
Format:
PDF
Description:
Bayesian model-scenario averaged ...
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions 
    Communication avec acte
    BUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)
    The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
  • Sparse Bayesian Learning of Explicit Algebraic Reynolds-Stress models for turbulent separated flows 
    Article dans une revue avec comité de lecture
    CHERROUD, Soufiane; MERLE, Xavier; ccCINNELLA, Paola; ccGLOERFELT, Xavier (Elsevier BV, 2022-12)
    A novel Sparse Bayesian Learning (SBL) framework is introduced for generating parsimonious stochastic algebraic stress closures for the Reynolds-Averaged Navier–Stokes (RANS) equations from high-fidelity data. The models ...
  • Bayesian quantification of thermodynamic uncertainties in dense gas flows 
    Article dans une revue avec comité de lecture
    MERLE, Xavier; CINNELLA, Paola (Elsevier, 2015)
    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the ...
  • Bayesian quantification of thermodynamic uncertainties in dense gas flows 
    Article dans une revue avec comité de lecture
    MERLE, Xavier; CINNELLA, Paola (Elsevier, 2014)
    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the ...
  • Robust prediction of dense gas flows under uncertain thermodynamic models 
    Article dans une revue avec comité de lecture
    MERLE, Xavier; CINNELLA, Paola (Elsevier, 2019)
    A Bayesian approach is developed to quantify uncertainties associated with the thermodynamic models used for the simulation of dense gas flows, i.e. flows of gases characterized by complex molecules of moderate to high ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales