Instability mechanisms in meandering streamwise vortex pairs of upswept afterbody wakes
Article dans une revue avec comité de lecture
Date
2022-07Journal
European Journal of Mechanics - B/FluidsAbstract
Wakes of upswept afterbodies are often characterized by counter-rotating streamwise vortex pairs which meander in space. One application concerns aft regions of cargo aircraft, which are characterized by a relatively flat upswept base. Here we consider a canonical configuration comprised of a cylinder with upswept basal surface. The resulting longitudinal vortices, which are much closer to each other than wing-tip vortices, can adversely influence paratrooper and cargo drop operations as well as trailing aircraft. The unsteady dynamics of these vortices are examined using spatio-temporally resolved Large-Eddy Simulations (LES) and stability considerations. Emphasis is placed on understanding the potential instability dynamics responsible for meandering, which was observed, characterized and quantified at a representative location downstream of the body. The dynamics is then successfully mapped to a matched Batchelor vortex pair, and spatial and temporal stability analyses are performed with both counter-rotating vortices in the computational domain. Both spatial and temporal analyses
reveal dipole structures associated with |m| = 1 elliptic modes as dominant modes in afterbody vortices. A short-wave elliptic instability mode is found to dominate the meandering motion in the vortex pair; this mode was stable in the case of an isolated vortex. Further, the strain due to axial velocity plays a key role in the instability and therefore breakdown. The low frequency of the unstable mode (Strouhal number StD ≃ 0.3 based on cylinder diameter) is consistent with the spectral analysis of meandering in the LES. Stability analyses at very low-wavenumber do not exhibit any unstable mode suggesting an absence of the Crow instability.
Files in this item
- Name:
- DYNFLUID_EJM-B-F_2022_ROBINET.pdf
- Size:
- 3.774Mb
- Format:
- Description:
- Instability mechanisms in ...
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; LERICHE, Emmanuel; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2014)The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate ...
-
Article dans une revue avec comité de lecturePICELLA, Francesco; LUSSEYRAN, F; CHERUBINI, Stefania; PASTUR, L; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)The transition to unsteadiness of a three-dimensional open cavity flow is investigated using the joint application of direct numerical simulations and fully three-dimensional linear stability analyses, providing a clear ...
-
Article dans une revue avec comité de lectureThe objective of this work is to investigate numerically the different physical mechanisms of the transition to turbulence of a separated boundary-layer flow over an airfoil at low angle of attack. In this study, the ...
-
Article dans une revue avec comité de lectureTransition from steady state to intermittent chaos in the cubical lid-driven flow is investigated numerically. Fully three-dimensional stability analyses have revealed that the flow experiences an Andronov-Poincaré-Hopf ...
-
Article dans une revue avec comité de lectureBUCCI, Michele Alessandro; PUCKERT, Dominik K.; ANDRIANO, Cesare; CHERUBINI, Stefania; RIST, Ulrich; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2017)The onset of unsteadiness in a boundary-layer flow past a cylindrical roughness element is investigated for three flow configurations at subcritical Reynolds numbers, both experimentally and numerically. On the one hand, ...