Nonlinear optimal perturbation of turbulent channel flow as a precursor of extreme events
Article dans une revue avec comité de lecture
Date
2023-08Journal
Journal of Fluid MechanicsAbstract
This work aims at studying the mechanisms behind the occurrence of extreme dissipation events in a channel flow, identifying nonlinear optimal perturbations as potential precursors of these events. Nonlinear optimal perturbations with respect to a generic turbulent instantaneous snapshot are computed for the first time using a direct-adjoint algorithm in the channel flow at
$Re_{\tau }\approx 180$ . The resulting initial perturbation displays the upstream tilting characteristic of Orr's mechanism and is positioned along the interfaces between two opposite-sign velocity streaks of the pre-existing turbulent field. Such a perturbation induces a sudden breakdown of the pre-existing structures and a heavier tail in the dissipation probability density function distribution. Different mechanisms are at play during this process: the high shear present at the interface between coherent low- and high-momentum regions is exploited to break down the larger structures and drive energy to small scales. This energy cascade is fed by an enhanced lift-up effect that produces intense streaks near the wall. It is found that the optimal perturbation grows exponentially during the first phase of its evolution reflecting the existence of a secondary modal instability of the streaks. To corroborate the results, the conditional spatiotemporal proper orthogonal decomposition (POD) analysis of Hack & Schimdt (J. Fluid Mech., vol. 907, 2021, A9) is performed both in the perturbed and in the unperturbed flow, showing a clear agreement between the two cases and with the reference study. Thus, the optimal perturbation at initial time can be considered as a precursor of extreme events.
Files in this item
- Name:
- DYNFLUID_JFM_2023_CIOLA.pdf
- Size:
- 5.979Mb
- Format:
- Description:
- Nonlinear optimal perturbation ...
- Embargoed until:
- 2024-03-01
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecture
PARENTE, Enza;
ROBINET, Jean-Christophe;
DE PALMA, Paul; CHERUBINI, Stefania (Cambridge University Press (CUP), 2022-05)
In this work, nonlinear variational optimization is used for obtaining minimal seeds for the formation of turbulent bands in channel flow. Using nonlinear optimization together with energy bisection, we have found that the ... -
Article dans une revue avec comité de lectureFARANO, Mirko; CHERUBINI, Stefania; ROBINET, Jean-Christophe; DE PALMA, Pietro; SCHNEIDER, T. M. (Cambridge University Press (CUP), 2018)Transitional turbulence in shear flows is supported by a network of unstable exact invariant solutions of the Navier–Stokes equations. The network is interconnected by heteroclinic connections along which the turbulent ...
-
Article dans une revue avec comité de lecturePARENTE, ENZA; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (Cambridge University Press, 2022)Recently, many authors have investigated the origin and growth of turbulent bands in shear flows, highlighting the role of streaks and their inflectional instability in the process of band generation and sustainment. ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; FARANO, Mirko; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (The Royal Society Publishing, 2022-05)A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (American Physical Society, 2020)The modal and nonmodal linear stability of a stably stratified Blasius boundary layer flow, composed of a velocity and a thermal boundary layer, is investigated. The temporal and spatial linear stability of such flow is ...