• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • Voir le document
  • Accueil de SAM
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lagrangian chaos in steady three-dimensional lid-driven cavity flow

Article dans une revue avec comité de lecture
Auteur
ccROMANO, Francesco
531216 Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
TÜRKBAY, Tuǧçe
KUHLMANN, Hendrik C.

URI
http://hdl.handle.net/10985/24424
DOI
10.1063/5.0005792
Date
2020-07
Journal
Chaos: An Interdisciplinary Journal of Nonlinear Science

Résumé

Steady three-dimensional flows in lid-driven cavities are investigated numerically using a high-order spectral-element solver for the incompressible Navier–Stokes equations. The focus is placed on critical points in the flow field, critical limit cycles, their heteroclinic connections, and on the existence, shape, and dependence on the Reynolds number of Kolmogorov–Arnold–Moser (KAM) tori. In finite-length cuboidal cavities at small Reynolds numbers, a thin layer of chaotic streamlines covers all walls. As the Reynolds number is increased, the chaotic layer widens and the complementary KAM tori shrink, eventually undergoing resonances, until they vanish. Accurate data for the location of closed streamlines and of KAM tori are provided, both of which reach very close to the moving lid. For steady periodic Taylor–Görtler vortices in spanwise infinitely extended cavities with a square cross section, chaotic streamlines occupy a large part of the flow domain immediately after the onset of Taylor–Görtler vortices. As the Reynolds number increases, the remaining KAM tori vanish from the Taylor–Görtler vortices, while KAM tori grow in the central region further away from the solid walls.

Fichier(s) constituant cette publication

Nom:
LMFL_Chaos_2020_ROMANO.pdf
Taille:
6.051Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire de Mécanique des Fluides de Lille (LMFL)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Coherent Particle Structures in High-Prandtl-Number Liquid Bridges 
    Article dans une revue avec comité de lecture
    BARMAK, Ilya; ccROMANO, Francesco; KANNAN, Parvathy Kunchi; KUHLMANN, Hendrik C. (Springer Science and Business Media LLC, 2021-02)
    Clustering of small rigid spherical particles into particle accumulation structures (PAS) is studied numerically for a high-Prandtl-number (Pr = 68) thermocapillary liquid bridge. The one-way-coupling approach is used for ...
  • Attractors for the motion of a finite-size particle in a cuboidal lid-driven cavity 
    Article dans une revue avec comité de lecture
    WU, Haotian; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2023-01)
    The motion of a finite-size particle in the cuboidal lid-driven cavity flow is investigated experimentally for Reynolds numbers 100 and 200 for which the flow is steady. These steady three-dimensional flows exhibit chaotic ...
  • MaranStable: A linear stability solver for multiphase flows in canonical geometries 
    Article dans une revue avec comité de lecture
    STOJANOVIĆ, Mario; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Elsevier BV, 2023-07)
    MaranStable is a software to perform three-dimensional linear stability analyses of steady two-dimensional non-isothermal multiphase flows in canonical geometries. Different approximations to the Navier–Stokes equations ...
  • Stokesian motion of a spherical particle near a right corner made by tangentially moving walls 
    Article dans une revue avec comité de lecture
    ccROMANO, Francesco; DES BOSCS, Pierre-Emmanuel; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2021-09)
    The slow motion of a small buoyant sphere near a right dihedral corner made by tangentially sliding walls is investigated. Under creeping-flow conditions the force and torque on the sphere can be decomposed into eleven ...
  • Stability of thermocapillary flow in liquid bridges fully coupled to the gas phase 
    Article dans une revue avec comité de lecture
    STOJANOVIĆ, Mario; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2022-09)
    The linear stability of the axisymmetric steady thermocapillary flow in a liquid bridge made from 2 cSt silicone oil (Prandtl number 28) is investigated numerically in the framework of the Boussinesq approximation. The ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales