• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • Voir le document
  • Accueil de SAM
  • Laboratoire de Mécanique des Fluides de Lille (LMFL)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lagrangian chaos in steady three-dimensional lid-driven cavity flow

Article dans une revue avec comité de lecture
Auteur
ccROMANO, Francesco
531216 Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
TÜRKBAY, Tuǧçe
KUHLMANN, Hendrik C.

URI
http://hdl.handle.net/10985/24424
DOI
10.1063/5.0005792
Date
2020-07
Journal
Chaos: An Interdisciplinary Journal of Nonlinear Science

Résumé

Steady three-dimensional flows in lid-driven cavities are investigated numerically using a high-order spectral-element solver for the incompressible Navier–Stokes equations. The focus is placed on critical points in the flow field, critical limit cycles, their heteroclinic connections, and on the existence, shape, and dependence on the Reynolds number of Kolmogorov–Arnold–Moser (KAM) tori. In finite-length cuboidal cavities at small Reynolds numbers, a thin layer of chaotic streamlines covers all walls. As the Reynolds number is increased, the chaotic layer widens and the complementary KAM tori shrink, eventually undergoing resonances, until they vanish. Accurate data for the location of closed streamlines and of KAM tori are provided, both of which reach very close to the moving lid. For steady periodic Taylor–Görtler vortices in spanwise infinitely extended cavities with a square cross section, chaotic streamlines occupy a large part of the flow domain immediately after the onset of Taylor–Görtler vortices. As the Reynolds number increases, the remaining KAM tori vanish from the Taylor–Görtler vortices, while KAM tori grow in the central region further away from the solid walls.

Fichier(s) constituant cette publication

Nom:
LMFL_Chaos_2020_ROMANO.pdf
Taille:
6.051Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire de Mécanique des Fluides de Lille (LMFL)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Finite-size coherent particle structures in high-Prandtl-number liquid bridges 
    Article dans une revue avec comité de lecture
    BARMAK, Ilya; ccROMANO, Francesco; KUHLMANN, Hendrik C. (American Physical Society (APS), 2021-08)
    The transport of liquid and of small rigid spherical particles in a high-Prandtl-number (Pr = 68) thermocapillary liquid bridge under zero gravity is studied by highly resolved numerical simulations when the flow arises ...
  • Stability of thermocapillary flow in liquid bridges fully coupled to the gas phase 
    Article dans une revue avec comité de lecture
    STOJANOVIĆ, Mario; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2022-09)
    The linear stability of the axisymmetric steady thermocapillary flow in a liquid bridge made from 2 cSt silicone oil (Prandtl number 28) is investigated numerically in the framework of the Boussinesq approximation. The ...
  • Instability of axisymmetric flow in thermocapillary liquid bridges: Kinetic and thermal energy budgets for two-phase flow with temperature-dependent material properties 
    Article dans une revue avec comité de lecture
    STOJANOVIĆ, Mario; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2023-07)
    In numerical linear stability investigations, the rates of change of the kinetic and thermal energy of the perturbation flow are often used to identify the dominant mechanisms by which kinetic or thermal energy is exchanged ...
  • Attractors for the motion of a finite-size particle in a two-sided lid-driven cavity 
    Article dans une revue avec comité de lecture
    WU, Haotian; ccROMANO, Francesco; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2020-11)
    The motion of a single spherical particle in a two-sided lid-driven cavity is investigated experimentally. The flow in which the particle moves is created by two facing cavity sidewalls which move with equal velocity in ...
  • Stokesian motion of a spherical particle near a right corner made by tangentially moving walls 
    Article dans une revue avec comité de lecture
    ccROMANO, Francesco; DES BOSCS, Pierre-Emmanuel; KUHLMANN, Hendrik C. (Cambridge University Press (CUP), 2021-09)
    The slow motion of a small buoyant sphere near a right dihedral corner made by tangentially sliding walls is investigated. Under creeping-flow conditions the force and torque on the sphere can be decomposed into eleven ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales