From bio-sourced to bio-inspired cellular materials: A review on their mechanical behavior under dynamic loadings
Article dans une revue avec comité de lecture
Date
2024-01Journal
Materials LettersAbstract
Natural cellular materials can be used directly or as a constituent of bio-sourced composites for industrial applications involving dynamic loadings, usually for the purpose of absorbing mechanical energy. These biological materials can also be used as an inspiration to conceive more efficient heterogeneous structures for impact mitigation. In this review letter, we present two natural materials for which the properties have been studied dynamically: balsa wood and corkbased agglomerates. Both display an important strain-rate dependence but because of their different microstructure, this dependence is not the same. Consequently, a better understanding of the relationship between the hierarchical structure of natural cellular materials and their mechanical behavior, from quasi-static to dynamic, would be beneficial for the conception of new bio-inspired architected structures. We then focus on two types of bio-inspired architected structures: the functionally density graded cellular structures and the multi-layered architected structures. These two types of structures are gaining interest, but it appears that their dynamic behavior still lacks studying and understanding. More research linking the local strain mechanisms to their macroscopic mechanical behavior in quasistatic and dynamic would allow further architected structure optimization for mechanical energy absorption.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureHENRY, Quentin; VIOT, Philippe; LE BARBENCHON, Louise; COSCULLUELA, Antonio; KOPP, Jean-Benoit (Elsevier BV, 2024-06)The mechanical response of porous aluminas under compressive loading was studied and compared with the fracture mechanisms. Aluminas with a wide range of pore sizes and porosity rates (1–60%) were produced to deconvolve ...
-
Article dans une revue avec comité de lectureThis study focuses on the link between the microstructure and the mechanical behavior under shear loading of a thick cellular structural adhesive (TCSA). X-ray microtomography and image post-processing were first used to ...
-
Article dans une revue avec comité de lectureA bio-sourced foam, agglomerated cork, was chosen to evaluate the influence of short fibres on the mechanical behaviour of cellular materials. The final material was obtained by mixing cork particles with a thermoset resin. ...
-
Article dans une revue avec comité de lectureThis study focuses on the microstructural aspects of a cork-based by-product known as agglomerated cork and its influence on the compressive mechanical behaviour. The material consists in granulates of a natural polymeric ...
-
Article dans une revue avec comité de lectureUnderstanding the mechanical behavior of materials in working conditions is a current problem in transport industries. In this article, we demonstrate why the temperature and the strain-rate are first-order parameters when ...