Parametric Damage Mechanics Empowering Structural Health Monitoring of 3D Woven Composites
Article dans une revue avec comité de lecture
Author
Abstract
This paper presents a data-driven structural health monitoring (SHM) method by the use of so-called reduced-order models relying on an offline training/online use for unidirectional fiber and matrix failure detection in a 3D woven composite plate. During the offline phase (or learning) a dataset of possible damage localization, fiber and matrix failure ratios is generated through high-fidelity simulations (ABAQUS software). Then, a reduced model in a lower-dimensional approximation subspace based on the so-called sparse proper generalized decomposition (sPGD) is constructed. The parametrized approach of the sPGD method reduces the computational burden associated with a high-fidelity solver and allows a faster evaluation of all possible failure configurations. However, during the testing phase, it turns out that classical sPGD fails to capture the influence of the damage localization on the solution. To alleviate the just-referred difficulties, the present work proposes an adaptive sPGD. First, a change of variable is carried out to place all the damage areas on the same reference region, where an adapted interpolation can be done. During the online use, an optimization algorithm is employed with numerical experiments to evaluate the damage localization and damage ratio which allow us to define the health state of the structure.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureJACOT, Maurine; CHAMPANEY, Victor; TORREGROSA JORDAN, Sergio; CORTIAL, Julien; CHINESTA SORIA, Francisco (EDP Sciences, 2024-03)Resolving Partial Differential Equations (PDEs) through numerical discretization methods like the Finite Element Method presents persistent challenges associated with computational complexity, despite achieving a satisfactory ...
-
Article dans une revue avec comité de lectureSANCARLOS, Abel; CHAMPANEY, Victor; CUETO, Elias; CHINESTA SORIA, Francisco (Springer Open, 2023-03)Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding ...
-
Article dans une revue avec comité de lectureRUNACHER, Antoine; KAZEMZADEH-PARSI, Mohammad-Javad; DI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; AMMAR, Amine; CHINESTA SORIA, Francisco (2023)Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
-
Article dans une revue avec comité de lectureVERMIGLIO, Simona; CHAMPANEY, Victor; SANCARLOS, Abel; DAIM, Fatima; KEDZIA, Jean Claude; DUVAL, Jean Louis; DIEZ, Pedro; CHINESTA SORIA, Francisco (MDPI, 2020)Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave ...
-
Article dans une revue avec comité de lectureDEROUICHE, Khouloud; GAROIS, Sevan; CHAMPANEY, Victor; DAOUD, Monzer; TRAIDI, Khalil; CHINESTA SORIA, Francisco (MDPI AG, 2021)Data-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest ...