• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parametric Damage Mechanics Empowering Structural Health Monitoring of 3D Woven Composites

Article dans une revue avec comité de lecture
Author
ccJACOT, Maurine
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CHAMPANEY, Victor
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCORTIAL, Julien

URI
http://hdl.handle.net/10985/24737
DOI
10.3390/s23041946
Date
2023
Journal
Sensors

Abstract

This paper presents a data-driven structural health monitoring (SHM) method by the use of so-called reduced-order models relying on an offline training/online use for unidirectional fiber and matrix failure detection in a 3D woven composite plate. During the offline phase (or learning) a dataset of possible damage localization, fiber and matrix failure ratios is generated through high-fidelity simulations (ABAQUS software). Then, a reduced model in a lower-dimensional approximation subspace based on the so-called sparse proper generalized decomposition (sPGD) is constructed. The parametrized approach of the sPGD method reduces the computational burden associated with a high-fidelity solver and allows a faster evaluation of all possible failure configurations. However, during the testing phase, it turns out that classical sPGD fails to capture the influence of the damage localization on the solution. To alleviate the just-referred difficulties, the present work proposes an adaptive sPGD. First, a change of variable is carried out to place all the damage areas on the same reference region, where an adapted interpolation can be done. During the online use, an optimization algorithm is employed with numerical experiments to evaluate the damage localization and damage ratio which allow us to define the health state of the structure.

Files in this item

Name:
PIMM-SENSORS-2023-Jacot.pdf
Size:
11.79Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Empowering optimal transport matching algorithm for the construction of surrogate parametric metamodel 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccTORREGROSA JORDAN, Sergio; ccCORTIAL, Julien; ccCHINESTA SORIA, Francisco (EDP Sciences, 2024-03)
    Resolving Partial Differential Equations (PDEs) through numerical discretization methods like the Finite Element Method presents persistent challenges associated with computational complexity, despite achieving a satisfactory ...
  • Regularized regressions for parametric models based on separated representations 
    Article dans une revue avec comité de lecture
    ccSANCARLOS, Abel; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Springer Open, 2023-03)
    Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding ...
  • Describing and Modeling Rough Composites Surfaces by Using Topological Data Analysis and Fractional Brownian Motion 
    Article dans une revue avec comité de lecture
    ccRUNACHER, Antoine; ccKAZEMZADEH-PARSI, Mohammad-Javad; ccDI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (2023)
    Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
  • Parametric Electromagnetic Analysis of Radar-Based Advanced Driver Assistant Systems 
    Article dans une revue avec comité de lecture
    VERMIGLIO, Simona; CHAMPANEY, Victor; SANCARLOS, Abel; DAIM, Fatima; KEDZIA, Jean Claude; DUVAL, Jean Louis; DIEZ, Pedro; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave ...
  • Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process 
    Article dans une revue avec comité de lecture
    DEROUICHE, Khouloud; GAROIS, Sevan; CHAMPANEY, Victor; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    Data-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales