• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process

Article dans une revue avec comité de lecture
Author
DEROUICHE, Khouloud
GAROIS, Sevan
CHAMPANEY, Victor
DAOUD, Monzer
549864 Institut de recherche technologique Matériaux Métallurgie et Procédés [IRT M2P]
TRAIDI, Khalil
505477 Safran Tech
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/20595
DOI
10.3390/met11050738
Date
2021
Journal
Metals

Abstract

Data-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest (QoI) related to the IH process will be evaluated under real-time constraint, without any explicit knowledge of the physical behavior of the system. Hence, computationally expensive finite element models will be replaced by a parametric solution, called metamodel. Two data-driven models for temporal evolution of temperature and austenite phase transformation, during induction heating, were first developed by using the proper orthogonal decomposition based reduced-order model followed by a nonlinear regression method for temperature field and a classification combined with regression for austenite evolution. Then, data-driven and hybrid models were created to predict hardness, after quenching. It is shown that the results of artificial intelligence models are promising and provide good approximations in the low-data limit case.

Files in this item

Name:
PIMM_M_2021_DEROUICHE.pdf
Size:
2.680Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Real-time prediction by data-driven models applied to induction heating process 
    Article dans une revue avec comité de lecture
    DEROUICHE, Khouloud; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2022-05-27)
    Data-driven modeling approach constitutes an appealing alternative to the finite element method for optimizing complex multiphysics parametrized problems. In this context, this paper aims at proposing a parametric solution ...
  • Artificial intelligence modeling of induction contour hardening of 300M steel bar and C45 steel spur-gear 
    Article dans une revue avec comité de lecture
    ccGAROIS, Sevan; DAOUD, Monzer; TRAIDI, Khalil; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2023-04)
    Induction hardening is a heat surface treatment technique widely employed for steel components in order to improve their fatigue life without affecting the metallurgy of the bulk material. The control of the treated ...
  • Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing 
    Article dans une revue avec comité de lecture
    LOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The ...
  • Engineering empowered by physics-based and data-driven hybrid models: A methodological overview 
    Article dans une revue avec comité de lecture
    CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Springer Science and Business Media LLC, 2022-04-05)
    Smart manufacturing implies creating virtual replicas of the processing operations, taking into account the material dimension and its multi-physics transformation when forming processes operate. Performing efficient, that ...
  • Hybrid twins based on optimal transport 
    Article dans une revue avec comité de lecture
    TORREGROSA, Sergio; CHAMPANEY, Victor; ccAMMAR, Amine; HERBERT, Vincent; ccCHINESTA SORIA, Francisco (Elsevier BV, 2022-10)
    Nowadays data is acquiring an indisputable importance in every field including engineering. In the past, experimental data was used to calibrate state-of-the art models. Once the model was optimally calibrated, numerical ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales