• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced Deep Learning Techniques for Industry 4.0: Application to Mechanical Design and Structural Health Monitoring

Communication avec acte
Auteur
ccABABSA, Fakhreddine
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/25144
DOI
10.5220/0012364300003636
Date
2024-02

Résumé

Nowadays, Deep Learning (DL) techniques are increasingly employed in industrial applications. This paper investigate the development of data-driven models for two use cases: Additive Manufacturing-driven Topology Optimization and Structural Health Monitoring (SHM). We first propose an original data-driven generative method that integrates the mechanical and geometrical constraints concurrently at the same conceptual level and generates a 2D design accordingly. In this way, it adapts the geometry of the design to the manufacturing criteria, allowing the designer better interpretation and avoiding being stuck in a timeconsuming loop of drawing the CAD and testing its performance. On the other hand, SHM technique is dedicated to the continuous and non-invasive monitoring of structures integrity, ensuring safety and optimal performances through on-site real-time measurements. We propose in this work new ways of structuring data that increase the accuracy of data driven SHM algorithms and that are based on the physical knowledge related with the structure to be inspected. We focus our study on the damage classification step within the aeronautic context, where the primary objective is to distinguish between different damage types in composite.

Fichier(s) constituant cette publication

Nom:
PIMM_ICAART_2024_ABABSA.pdf
Taille:
1.113Mo
Format:
PDF
Description:
Advanced Deep Learning Techniques ...
Voir/Ouvrir
CC BY-NC-ND
Ce document est diffusé sous licence CC BY-NC-ND

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • 3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter 
    Article dans une revue avec comité de lecture
    ABABSA, Fakhreddine; HADJ-ABDELKADER, Hicham; BOUI, Marouane (MDPI, 2020)
    The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the ...
  • Image processing through deep learning after DI extraction for the SHM of aeronautic composite structures using Lamb waves 
    Communication avec acte
    HUSAIN, Salmanne; ccRÉBILLAT, Marc; ccABABSA, Fakhreddine (SPIE, 2023-07)
    Ce papier présente une méthode de classification des dommages présents dans des plaques composites utilisées dans le contexte aéronautique. les approches utilisées sont issues du traitement du signal, de l'image et de ...
  • Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case 
    Communication avec acte
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (2019)
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated ...
  • Towards improving the future of manufacturing through digital twin and augmented reality technologies 
    Article dans une revue avec comité de lecture
    RABAH, Souad; ASSILA, Ahlem; KHOURI, Elio; MAIER, Florian; ABABSA, Fakhreddine; BOURNY, Valéry; MAIER, Paul; ccMERIENNE, Frédéric (Elsevier, 2018)
    We are on the cusp of a technological revolution that will fundamentally change our relationships to others and the way we live and work. These changes, in their importance, scope, and complexity, is different than what ...
  • Augmented Reality assistance for R&D assembly in Aeronautics 
    Communication avec acte
    PRUVOST, Martin; MIALOCQ, Pierre; ABABSA, Fakhreddine (2018)
    This paper presents an AR system architecture for assisting complex assembly work by adding visual information superimposed on the physical assembly parts.

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales