• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case

Communication avec acte
Author
LOIZEAU, Quentin
ABABSA, Fakhreddine
ccMERIENNE, Frédéric
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccDANGLADE, Florence

URI
http://hdl.handle.net/10985/16816
Date
2019

Abstract

Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated to aeronautic sector and the environment of maintenance. AR tools seem well indicated to solve constraints of productivity and quality on the aeronautical maintenance activities by simplifying data interactions for the workers. However, few evaluations of AR have been done in real processes due to the difficulty of integrating the technology without proper tools for deployment and assessing the results. This paper proposes a method to select suitable criteria for AR evaluation in industrial environment and to deploy AR solutions suited to assist maintenance workers. These are used to set up on-field experiments that demonstrate benefits of AR on process and user point of view for different profiles of workers. Further work will consist on using these elements to extend results to AR evaluation on the whole aeronautical maintenance process. A classification of maintenance activities linked to workers specific needs will lead to prediction of the value that augmented reality would bring to each activity.

Files in this item

Name:
LISPEN_EUROVR_2019_LOIZEAU.pdf
Size:
666.5Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Methodology for the Field Evaluation of the Impact of Augmented Reality Tools for Maintenance Workers in the Aeronautic Industry 
    Article dans une revue avec comité de lecture
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (Frontiers, 2021)
    Augmented Reality (AR) enhances the comprehension of complex situations by making the handling of contextual information easier. Maintenance activities in aeronautics consist of complex tasks carried out on various ...
  • Geometrically-driven generation of mechanical designs through deep convolutional GANs 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; ccBETTEBGHOR, Dimitri; ADJED, Faouzi; ccDANGLADE, Florence; ABABSA, Fakhreddine (Informa UK Limited, 2022-12-16)
    Despite the freedom Additive Manufacturing (AM) offers when manufacturing organic shapes, it still requires some geometrical criteria to avoid a part's collapse during printing. The most synergetic design approach to AM ...
  • GMCAD: an original Synthetic Dataset of 2D Designs along their Geometrical and Mechanical Conditions 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; ccDANGLADE, Florence (Elsevier BV, 2022)
    We build an original synthetic dataset of 2D mechanical designs alongside their mechanical and geometric constraints, GMCAD. Such a dataset allows training Deep Learning (DL) models for Design for Additive Manufacturing ...
  • Deep Learning for Additive Manufacturing-driven Topology Optimization 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; ccDANGLADE, Florence (Elsevier BV, 2022-06-21)
    This paper investigates the potential of Deep Learning (DL) for data-driven topology optimization (TO). Unlike the rest of the literature that mainly applies DL to TO from a mechanical perspective, we developed an original ...
  • Deep Learning Architecture for Topological Optimized Mechanical Design Generation with Complex Shape Criterion 
    Communication avec acte
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ABABSA, Fakhreddine; ADJED, Faouzi; ccDANGLADE, Florence (Springer International Publishing, 2021)
    Topology optimization is a powerful tool for producing an optimal free-form design from input mechanical constraints. However, in its traditional-density-based approach, it does not feature a proper definition for the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales