Microstructure generation and full-field multi-scale analyses for short fiber reinforced thermoplastics: Application to PA66GF composites
Article dans une revue avec comité de lecture
Date
2024-05Journal
Composite StructuresAbstract
Short Fiber Reinfored Thermoplastics (SFRTs) like PA66GF composites are highly heterogeneous materials with a rather complex microstructure such that the characterization and the prediction of their mechanical behavior remain quite challenging. So far, most of the research efforts have employed phenomenologigal and mean-field multi-scale models to deal with SFRTs. The present contribution rather focuses on a full-field multi-scale approach that incorporates advanced techniques in terms of microstructural representation and material modeling, allowing a deep insight of the dominating deformation mechanisms occurring in PA66GF composites. The proposed approach is based on an automatic periodic mesh generation algorithm for matrix-inclusion Representative Volume Elements (RVE) with randomly positioned fibers that follow a given Orientation Distribution Function (ODF). At the microscopic scale, while the fibers are assumed to be elastic, the behavior of the thermoplastic matrix is described by a phenomenological multi-mechanism constitutive model accounting for viscoelasticity, viscoplasticity and ductile damage. It results an advanced multi-scale model that enables to visualize the local deformation and degradation mechanisms occurring at the microscopic scale while simultaneously analyzing their influence on the macroscopic response of the composite upon monotonic, persistent and cyclic loading. The potential of the proposed approach is further evaluated by comparing the predicted responses against experimental data.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec actePRAUD, Francis; SCHNEIDER, Konrad; CHATZIGEORGIOU, George; MERAGHNI, Fodil (Association pour les MAtériaux Composites (AMAC), 2023-07)Afin d’apporter un maxinmun d’éléments de compréhension quant au comportement mécanique des composites thermoplastiques renforcés de fibres courtes, la présente contribution propose une démarche multi-échelle par champs ...
-
Article dans une revue avec comité de lectureTIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; PRAUD, Francis; PIOTROWSKI, Boris; CHEMISKY, Yves; MERAGHNI, Fodil (Elsevier, 2018)In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The ...
-
Article dans une revue avec comité de lectureIn this work, a multi-scale model established from the concept of periodic homogenization is utilized to predict the cyclic and time-dependent response of thermoplastic-based woven composites. The macroscopic behaviour of ...
-
Article dans une revue avec comité de lectureMOUELLE, L.; PRAUD, Francis; CHATZIGEORGIOU, George; MERAGHNI, Fodil; SERRI, J.; FLEURY, E. (Elsevier, 2019)In this paper, a new thermodynamically-consistent modeling approach, dedicated to welding applications, is presented to describe the phenomenon of hardening recovery in metals during annealing. The constitutive equations ...
-
Article dans une revue avec comité de lectureEL FALLAKI IDRISSI, M.; PRAUD, Francis; MERAGHNI, Fodil; CHINESTA SORIA, Francisco; CHATZIGEORGIOU, George (Elsevier BV, 2024-05)The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears ...