• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale Thermodynamics-Informed Neural Networks (MuTINN) towards fast and frugal inelastic computation of woven composite structures

Article dans une revue avec comité de lecture
Author
EL FALLAKI IDRISSI, M.
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
PRAUD, Francis
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/24965
DOI
10.1016/j.jmps.2024.105604
Date
2024-05
Journal
Journal of the Mechanics and Physics of Solids

Abstract

The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears feasible through the application of multi-scale modeling approaches. However, effectively incorporating these methodologies into real-scale applications, particularly within FE 2 analyses, remains challenging due to the significant computational requirements they entail. To overcome this issue, while considering the scale effects, this study introduces an alternative approach based on Artificial Neural Networks (ANNs) to perform a macroscopic surrogate model of composites. This model, referred to as Multiscale Thermodynamics Informed Neural Networks (MuTINN), is founded on thermodynamic principles and introduces specific quantities of interest that serve as internal state variables at the macroscopic level. This captures efficiently the state and evolution laws governing the history-dependent behavior of these composites while retaining the thermodynamic admissibility and the physical interpretability of their overall responses. Moreover, to facilitate its numerical implementation within a FE code, a Meta-UMat has been developed, streamlining the application of multiscale FE-MuTINN approach for composite structure computations. The prediction capabilities of the proposed approach is demonstrated across the material scales, exemplified through diverse instances of woven composite structures. Theses applications account for anisotropic yarn damage and an elastoplastic polymer matrix behavior. The numerical results and the related comparison with experimental findings and FE computations demonstrate remarkable consistency across a wide range of non-proportional loading paths. This promises a potential solution to alleviate the computational challenges associated with multiscale simulations of large composite structures.

Files in this item

Name:
LEM3_JMPS_2024_MERAGHNI .pdf
Size:
8.115Mb
Format:
PDF
Embargoed until:
2024-12-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Multiparametric modelling of composite materials based on non-intrusive PGD informed by multiscale analyses: Application for real-time stiffness prediction of woven composites 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Fodil (Elsevier, 2022-09)
    In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...
  • Multiscale Thermodynamics-Informed Neural Networks (MuTINN) for nonlinear structural computations of recycled thermoplastic composites 
    Article dans une revue avec comité de lecture
    SEKKAL, S.E.; ccEL FALLAKI IDRISSI, Mohammed; ccMERAGHNI, Fodil; ccCHATZIGEORGIOU, George; ccCHINESTA SORIA, Francisco (Elsevier BV, 2025-04)
    Fiber-reinforced thermoplastic composites are increasingly valued for their light-weight properties, mechanical performance, and recyclability, yet the recycling process introduces microstructural heterogeneities that ...
  • Advanced Meta-Modeling framework combining Machine Learning and Model Order Reduction towards real-time virtual testing of woven composite laminates in nonlinear regime 
    Article dans une revue avec comité de lecture
    ccEL FALLAKI IDRISSI, Mohammed; PASQUALE, Angelo; ccMERAGHNI, Fodil; PRAUD, Francis; CHINESTA, Francisco (Elsevier BV, 2025-03)
    This paper presents an advanced meta-modeling framework that efficiently combines Machine Learning and Model Order Reduction (MOR) techniques for real-time virtual testing of woven composite materials. The framework is ...
  • PGD non-intrusive pour la simulation multiparamétrique en temps réel du comportement non-linéaire des composites à renforts tissés intégrant les paramètres microstructuraux 
    Communication avec acte
    ccEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)
    La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ...
  • Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures 
    Article dans une revue avec comité de lecture
    TIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; PRAUD, Francis; PIOTROWSKI, Boris; CHEMISKY, Yves; ccMERAGHNI, Fodil (Elsevier, 2018)
    In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales