• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quaternion-based finite-element computation of nonlinear modes and frequency responses of geometrically exact beam structures in three dimensions

Article dans une revue avec comité de lecture
Author
ccDEBEURRE, Marielle
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
GROLET, Aurélien
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/25361
DOI
10.1007/s11044-024-09999-9
Date
2024-06
Journal
Multibody System Dynamics

Abstract

In this paper, a novel method for computing the nonlinear dynamics of highly flexible slender structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous work restricted to inplane (2D) deformations. It is based on the geometrically exact beam model, which is discretized with a finite-element method and solved entirely in the frequency domain with a harmonic balance method (HBM) coupled to an asymptotic numerical method (ANM) for continuation of periodic solutions. An important consideration is the parametrization of the rotations of the beam’s cross sections, much more demanding than in the 2D case. Here, the rotations are parametrized with quaternions, with the advantage of leading naturally to polynomial nonlinearities in the model, well suited for applying the ANM. Because of the HBM–ANM framework, this numerical strategy is capable of computing both the frequency response of the structure under periodic oscillations and its nonlinear modes (namely its backbone curves and deformed shapes in free conservative oscillations). To illustrate and validate this strategy, it is used to solve two 3D deformations test cases of the literature: a cantilever beam and a clamped–clamped beam subjected to one-to-one (1:1) internal resonance between two companion bending modes in the case of a nearly square cross section.

Files in this item

Name:
LISPEN_MSB_2024_THOMAS.pdf
Size:
2.171Mb
Format:
PDF
Embargoed until:
2025-01-01
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Extreme nonlinear dynamics of cantilever beams: effect of gravity and slenderness on the nonlinear modes 
    Article dans une revue avec comité de lecture
    DEBEURRE, Marielle; GROLET, Aurélien; ccTHOMAS, Olivier (Springer Science and Business Media LLC, 2023-06-15)
    In this paper, the effect of gravity on the nonlinear extreme amplitude vibrations of a slender, vertically-oriented cantilever beam is investigated. The extreme nonlinear vibrations are modeled using a finite element ...
  • Phase resonance testing of highly flexible structures: Measurement of conservative nonlinear modes and nonlinear damping identification 
    Article dans une revue avec comité de lecture
    ccDEBEURRE, Marielle; ccBENACCHIO, Simon; GROLET, Aurélien; GRENAT, Clément; ccGIRAUD-AUDINE, Christophe; THOMAS, Olivier (Elsevier BV, 2024-06)
    This article addresses the measurement of the nonlinear modes of highly flexible structures vibrating at extreme amplitude, using a Phase-Locked Loop experimental continuation technique. By separating the motion into its ...
  • Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures 
    Article dans une revue avec comité de lecture
    DEBEURRE, Marielle; GROLET, Aurélien; COCHELIN, Bruno; ccTHOMAS, Olivier (Elsevier BV, 2023-03)
    An original method for the simulation of the dynamics of highly flexible slender structures is presented. The flexible structures are modeled via a finite element (FE) discretization of a geometrically exact two-dimensional ...
  • Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds 
    Article dans une revue avec comité de lecture
    MARTIN, Adrien; OPRENI, Andrea; ccVIZZACCARO, Alessandra; ccDEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; ccTHOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)
    The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
  • On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; GROLET, Aurélien; ccTHOMAS, Olivier; DEÜ, Jean-François (Springer Verlag, 2019)
    This paper presents a general methodology to compute nonlinear frequency responses of flat structures subjected to large amplitude transverse vibrations, within a finite element context. A reduced-order model (ROM)is ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales