• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance prediction of a hydrofoil near the free surface using low (BEM) and high (RANS) fidelity methods

Article dans une revue avec comité de lecture
Author
PERALI, Paolo
301846 École Nationale Supérieure de Techniques Avancées Bretagne [ENSTA Bretagne]
SACHER, Matthieu
301846 École Nationale Supérieure de Techniques Avancées Bretagne [ENSTA Bretagne]
LEROUX, Jean-Baptiste
301846 École Nationale Supérieure de Techniques Avancées Bretagne [ENSTA Bretagne]
ccWACKERS, Jeroen
1088633 Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique [LHEEA]
AUGIER, Benoît
300022 Institut Français de Recherche pour l'Exploitation de la Mer [IFREMER]
ccHAUVILLE, Frederic
ccBOT, Patrick
13094 Institut de Recherche de l'Ecole Navale [IRENAV]

URI
http://hdl.handle.net/10985/25488
DOI
10.1016/j.apor.2024.104157
Date
2024-08-08
Journal
Applied Ocean Research

Abstract

As a first step toward a multi-fidelity optimization tool for hydrofoils, the present work assesses the ability of the in-house code PUFFIn to be used as a “low-fidelity” solver within the multi-fidelity framework. The code, based on the Boundary Element Method (BEM) and the potential flow theory, is used to study the performance of a typical windsurf hydrofoil operating near the free surface. The hydrofoil is composed of a front wing and a rear stabilizer in a plane-like configuration. Computations are performed for single body configurations (only one wing) and two-body configurations (front wing and stabilizer). First, three linearized models of the free surface are compared for the single front wing configuration with several values of the Froude number: the symmetry, anti-symmetry and Neumann-Kelvin conditions. The results show that for relatively high Froude number, the anti-symmetry and the Neumann-Kelvin conditions provide very similar forces. Then, the predictions of the BEM solver are compared with “high-fidelity” RANS computations, in terms of pressure drag and lift, pressure distribution on the hydrofoil and free surface elevation. Several Froude numbers and submergence depths are studied. The global lift and drag variations predicted by the BEM with the anti-symmetry and Neumann-Kelvin conditions on the single-body configurations are similar to the RANS predictions. For the two-body configurations, the Neumann-Kelvin condition outperforms the anti-symmetry condition. Based on the BEM/RANS comparison, the potential flow solver reveals to be a relevant tool for multi-fidelity optimization.

Files in this item

Name:
IRENAV_APOR_2024_BOT.pdf
Size:
11.05Mb
Format:
PDF
Embargoed until:
2025-03-01
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • Optimising hydrofoils using automated multi-fidelity surrogate models 
    Article dans une revue avec comité de lecture
    ccPEHLIVAN SOLAK, Hayriye; ccWACKERS, Jeroen; PELLEGRINI, Riccardo; SERANI, Andrea; DIEZ, Matteo; PERALI, Paolo; SACHER, Matthieu; LEROUX, Jean-Baptiste; AUGIER, Benoît; ccHAUVILLE, Frederic; ccBOT, Patrick (Informa UK Limited - Taylor & Francis, 2024-11-14)
    Lifting hydrofoils are gaining importance, since they drastically reduce the wetted surface area of a ship, thus decreasing resistance. To attain efficient hydrofoils, the geometries can be obtained from an automated ...
  • Free-Surface Effects on Two-Dimensional Hydrofoils by RANS-VOF Simulations 
    Article dans une revue avec comité de lecture
    ccPERNOD, Laetitia; SACHER, Matthieu; ccWACKERS, Jeroen; AUGIER, Benoit; ccBOT, Patrick (The Society of Naval Architects and Marine Engineers, 2023-01-27)
    Foiling yachts and crafts are both very sensitive to the flying height in terms of stability and performance, raising the scientific issue of the influence of the free-surface when the foil is at low submergence. This work ...
  • Wind tunnel investigation of dynamic trimming on upwind sail aerodynamics 
    Communication avec acte
    AUBIN, Nicolas; AUGIER, Benoit; SACHER, Matthieu; FLAY, Richard G.J.; ccBOT, Patrick; ccHAUVILLE, Frederic (2016)
    An experiment was performed in the Yacht Research Unit’s Twisted Flow Wind Tunnel (University of Auckland) to test the effect of dynamic trimming on three IMOCA 60 inspired mainsail models in an upwind (AWA = 60 ) unheeled ...
  • Wind tunnel investigation of dynamic trimming on upwind sail aerodynamics 
    Article dans une revue avec comité de lecture
    AUBIN, Nicolas; AUGIER, Benoit; ccBOT, Patrick; ccHAUVILLE, Frederic; SACHER, Matthieu; FLAY, Richard G.J. (The Society of Naval Architects and Marine Engineers, 2017)
    An experiment was performed in the Yacht Research Unit’s Twisted Flow Wind Tunnel (University of Auckland) to test the effect of dynamic trimming on three IMOCA 60 inspired mainsail models in an upwind ( AW = 60°) unheeled ...
  • Boundary Element Method Analysis of 3D Effects and Free-Surface Proximity on Hydrofoil Lift and Drag Coefficients in Varied Operating Conditions 
    Article dans une revue avec comité de lecture
    ccNICOLAS, Hugo; PERALI, Paolo; ccSACHER, Matthieu; ccBOT, Patrick (The Society of Naval Architects and Marine Engineers, 2023-12-04)
    The use of hydrofoils to enhance ship performance raises the scientific issue of free-surface proximity, which is important to consider during the design stage, to feed velocity prediction programs, for instance. Typically, ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales