Data Augmentation for Regression Machine Learning Problems in High Dimensions
Article dans une revue avec comité de lecture
Date
2024-02Journal
ComputationAbstract
Machine learning approaches are currently used to understand or model complex physical systems. In general, a substantial number of samples must be collected to create a model with reliable results. However, collecting numerous data is often relatively time-consuming or expensive. Moreover, the problems of industrial interest tend to be more and more complex, and depend on a high number of parameters. High-dimensional problems intrinsically involve the need for large amounts of data through the curse of dimensionality. That is why new approaches based on smart sampling techniques have been investigated to minimize the number of samples to be given to train the model, such as active learning methods. Here, we propose a technique based on a combination of the Fisher information matrix and sparse proper generalized decomposition that enables the definition of a new active learning informativeness criterion in high dimensions. We provide examples proving the performances of this technique on a theoretical 5D polynomial function and on an industrial crash simulation application. The results prove that the proposed strategy outperforms the usual ones.
Files in this item
- Name:
- PIMM_C_2024_GUILHAUMON.pdf
- Size:
- 5.122Mb
- Format:
- Description:
- Data Augmentation for Regression ...
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureREILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; CUETO, Elias; DUVAL, Jean Louis; CHINESTA SORIA, Francisco (EDP Sciences, 2021)Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
-
Article dans une revue avec comité de lectureIBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; GHNATIOS, Chady; AMMAR, Amine; CHINESTA SORIA, Francisco (MDPI, 2020)This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...
-
Article dans une revue avec comité de lectureARDUENGO, Javier; HASCOËT, Nicolas; CHINESTA SORIA, Francisco; HASCOET, Jean-Yves (Wroclaw Board of Scientific Technical Societies Federation NOT, 2024-03)Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D ...
-
Article dans une revue avec comité de lectureRUNACHER, Antoine; KAZEMZADEH-PARSI, Mohammad-Javad; DI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; AMMAR, Amine; CHINESTA SORIA, Francisco (2023)Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
-
Article dans une revue avec comité de lectureREILLE, Agathe; HASCOET, Nicolas; CUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; GHNATIOS, Chady; AMMAR, Amine; CHINESTA SORIA, Francisco (Elsevier Masson, 2019)The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...