• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatio-temporal physics-informed neural networks to solve boundary value problems for classical and gradient-enhanced continua

Article dans une revue avec comité de lecture
Auteur
ccNGUYEN, Duc-Vinh
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccJEBAHI, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/25542
DOI
10.1016/j.mechmat.2024.105141
Date
2024-08
Journal
Mechanics of Materials

Résumé

Recent advances have prominently highlighted physics informed neural networks (PINNs) as an efficient methodology for solving partial differential equations (PDEs). The present paper proposes a proof of concept exploring the use of PINNs as an alternative to finite element (FE) solvers in both classical and gradient-enhanced solid mechanics. To this end, spatio-temporal PINNs are designed to represent continuous solutions of boundary value problems within spatio-temporal space. These PINNs directly incorporate the equilibrium and constitutive equations in their differential and rate forms, bypassing the requirement for incremental implementation. This simplifies application of PINNs to solve complex mechanical problems, particularly those involved in the context of gradient-enhanced continua. Moreover, traditional meshing is no longer required as it is replaced by a point cloud, making it possible to overcome meshing drawbacks. The results of this investigation prove the effectiveness of the proposed methodology, especially with regards to non-monotonic loading conditions and irreversible plastic deformation. Compared to classical FE approaches, the proposed spatio-temporal PINNs are more readily applied to complex problems, which are tackled in their raw form. This is especially true for gradient-enhanced continuum problems, where there is no need to introduce additional degrees of freedom as in classical FE approaches. However, PINNs training generally requires more computation time, a challenge that can be mitigated by employing the concept of transfer learning as shown in this paper. This concept, which is very useful when performing parametric studies, involves applying knowledge grained from solving one problem to another different but related one. The use of PINNs as mechanical solvers is shown to be highly promising in the forthcoming era, where advancements in GPU technology can further enhance their performance in terms of computation time.

Fichier(s) constituant cette publication

Nom:
LEM3_MOM_2024_JEBAHI.pdf
Taille:
1.840Mo
Format:
PDF
Fin d'embargo:
2025-06-01
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Identification of material parameters in low-data limit: application to gradient-enhanced continua 
    Article dans une revue avec comité de lecture
    NGUYEN, Duc-Vinh; ccJEBAHI, Mohamed; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-01)
    Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex ...
  • Empowering Advanced Parametric Modes Clustering from Topological Data Analysis 
    Article dans une revue avec comité de lecture
    FRAHI, Tarek; FALCO, Antonio; MAU, Baptiste Vinh; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    Modal analysis is widely used for addressing NVH—Noise, Vibration, and Hardness—in automotive engineering. The so-called principal modes constitute an orthogonal basis, obtained from the eigenvectors related to the dynamical ...
  • Intelligent assistant system as a context-aware decision-making support for the workers of the future 
    Article dans une revue avec comité de lecture
    BELKADI, Farouk; DHUIEB, Mohamed Anis; AGUADO, José Vicente; LAROCHE, Florent; BERNARD, Alain; ccCHINESTA SORIA, Francisco (Elsevier, 2020)
    The key role of information and communication technologies (ICT) to improve manufacturing productivity within the paradigm of factory of the future is often proved. These tools are used in a wide range of product lifecycle ...
  • On the Model Order Reduction of Confined Plasticity 
    Communication avec acte
    NASRI, Mohamed Aziz; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco; ROBERT, Camille; ccEL AREM, Saber; ccMOREL, Franck (Springer, 2016)
    Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome when large parts and processes are considered. Recently Model Order Reduction techniques ...
  • PGD non-intrusive pour la simulation multiparamétrique en temps réel du comportement non-linéaire des composites à renforts tissés intégrant les paramètres microstructuraux 
    Communication avec acte
    ccEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)
    La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales