• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiparametric modelling of composite materials based on non-intrusive PGD informed by multiscale analyses: Application for real-time stiffness prediction of woven composites

Article dans une revue avec comité de lecture
Author
EL FALLAKI IDRISSI, Mohammed
PRAUD, Francis
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHAMPANEY, Victor
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccMERAGHNI, Fodil

URI
http://hdl.handle.net/10985/22637
DOI
10.1016/j.compstruct.2022.116228
Date
2022-09
Journal
Composite Structures

Abstract

In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline pre-computed solutions generated through a full-field multiscale modeling, the proposed method approximates the multidimensional solution as a sum of products of one-dimensional functions each depending on a single variable. The present work aims at providing an accurate approximation of this multiparametric solution with lower computational cost for dataset generation. Thus, a comparative analysis of three non-intrusive PGD formulations (SSL, s-PGD and ANOVA-PGD) is carried out. The obtained results reveal and demonstrate that the ANOVA-PGD model works well for approximating the stiffness properties over the entire parameter space, i.e., along its boundary as well as inside it, by using only few pre-computed high-fidelity solutions. Finally, a GUI application is developed to exploit this multiparametric solution by incorporating other composite weave architectures. This application could be easily used by engineers and composite designers, to deduce, in real-time, the macroscopic properties of woven composite for a given set of microstructural parameters by simply varying the cursors and without any microstructure generation and meshing nor FE computations using periodic homogenization.

Files in this item

Name:
LEM3_COST_2022_MERAGHNI.pdf
Size:
4.529Mb
Format:
PDF
Embargoed until:
2023-03-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Multiscale Thermodynamics-Informed Neural Networks (MuTINN) towards fast and frugal inelastic computation of woven composite structures 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, M.; PRAUD, Francis; ccMERAGHNI, Fodil; ccCHINESTA SORIA, Francisco; ccCHATZIGEORGIOU, George (Elsevier BV, 2024-05)
    The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears ...
  • Advanced Meta-Modeling framework combining Machine Learning and Model Order Reduction towards real-time virtual testing of woven composite laminates in nonlinear regime 
    Article dans une revue avec comité de lecture
    ccEL FALLAKI IDRISSI, Mohammed; PASQUALE, Angelo; ccMERAGHNI, Fodil; PRAUD, Francis; CHINESTA, Francisco (Elsevier BV, 2025-03)
    This paper presents an advanced meta-modeling framework that efficiently combines Machine Learning and Model Order Reduction (MOR) techniques for real-time virtual testing of woven composite materials. The framework is ...
  • PGD non-intrusive pour la simulation multiparamétrique en temps réel du comportement non-linéaire des composites à renforts tissés intégrant les paramètres microstructuraux 
    Communication avec acte
    ccEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)
    La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ...
  • Multiscale Thermodynamics-Informed Neural Networks (MuTINN) for nonlinear structural computations of recycled thermoplastic composites 
    Article dans une revue avec comité de lecture
    SEKKAL, S.E.; ccEL FALLAKI IDRISSI, Mohammed; ccMERAGHNI, Fodil; ccCHATZIGEORGIOU, George; ccCHINESTA SORIA, Francisco (Elsevier BV, 2025-04)
    Fiber-reinforced thermoplastic composites are increasingly valued for their light-weight properties, mechanical performance, and recyclability, yet the recycling process introduces microstructural heterogeneities that ...
  • Identification of material parameters in low-data limit: application to gradient-enhanced continua 
    Article dans une revue avec comité de lecture
    NGUYEN, Duc-Vinh; ccJEBAHI, Mohamed; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-01)
    Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales