• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Application for Real-Time Simulator

Communication avec acte
Auteur
HADADI, Azadeh
469668 Institut für Informationsmanagement im Ingenieurwesen [IMI]
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccCHARDONNET, Jean-Rémy
301320 École Nationale Supérieure d'Arts et Métiers [ENSAM]
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
1001263 Université Polytechnique Hauts-de-France [UPHF]
226175 Joint Robotics Laboratory [CNRS-AIST JRL ]
ccGUILLET, Christophe
300270 Université de Bourgogne [UB]
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccOVTCHAROVA, Jivka
469668 Institut für Informationsmanagement im Ingenieurwesen [IMI]
150665 Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]

URI
http://hdl.handle.net/10985/25603
DOI
10.1145/3674029.3674030
Date
2024-09

Résumé

This paper presents a groundbreaking research initiative that focuses on the development of an intelligent architecture for Adaptive Virtual Reality Systems (AVRS) in immersive virtual environments. The primary objective of this architecture is to enable real-time artificial intelligence training and adapt the virtual environment based on user states or external parameters. In a case study focused on detecting cybersickness, an undesired side effect in immersive virtual environments, we utilized this architecture to train an artificial intelligence model and personalize it for individual users in a driving simulator application. By leveraging the capabilities of this architecture, we can optimize virtual reality experiences for individual users, leading to increased comfort. We evaluated the system’s performance in terms of memory usage, CPU and GPU usage, temperature monitoring, frame rate, and network performance, and our results demonstrated the efficiency of our proposed architecture.

Fichier(s) constituant cette publication

Nom:
LISPEN_ICMLT_2024_HADADI.pdf
Taille:
1.437Mo
Format:
PDF
Fin d'embargo:
2025-04-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Prediction of cybersickness in virtual environments using topological data analysis and machine learning 
    Article dans une revue avec comité de lecture
    HADADI, Azadeh; ccCHRISTOPHE, GUILLET; ccLANGOVOY, Mikhail; ccWANG, Yuyang; ccOVTCHAROVA, Jivka; ccCHARDONNET, Jean-Rémy (Frontiers Media SA, 2022-10-11)
    Recent significant progress in Virtual Reality (VR) applications and environments raised several challenges. They proved to have side effects on specific users, thus reducing the usability of the VR technology in some ...
  • Intelligent Virtual Platform for Real-time Cybersickness Detection and Adaptation 
    Communication avec acte
    HADADI, Azadeh; ccCHARDONNET, Jean-Rémy; GUILLET, Christophe; ccOVTCHAROVA, Jivka (IEEE, 2024-01-17)
    This paper is a novel research endeavor focused on addressing cybersickness in virtual reality (VR) experiences. Traditional approaches to cybersickness prediction and detection rely on generalized artificial intelligence ...
  • SmartSimVR: An Architecture Integrating Machine Learning and Virtual Environment for Real-Time Simulation Adaptation 
    Communication avec acte
    HADADI, Azadeh; CHARDONNET, Jean-Rémy; ccCHRISTOPHE, GUILLET; ccOVTCHAROVA, Jivka (IEEE, 2024-02-22)
    This paper introduces SmartSimVR, a ground-breaking research initiative focused on the development of a user-specific intelligent architecture for immersive virtual environments. The primary objective of this architecture ...
  • CAVE vs. HMD in Distance Perception 
    Communication avec acte
    ccCOMBE, Theo; OVTCHAROVA, Jivka; ccMERIENNE, Frédéric; ccCHARDONNET, Jean-Rémy (IEEE, 2021)
    This study aims to analyze differences between a CAVE system and a Head-Mounted Display (HMD), two technologies presenting important differences, focusing on distance perception, as past research on this factor is usually ...
  • Comparing Avatar and Face-to-Face Collaboration in VR Education: Concept and Preliminary Insights 
    Communication avec acte
    MAYER, Anjela; KASTNER, Kevin; REICHWALD, Julian; ccOVTCHAROVA, Jivka; ccCHARDONNET, Jean-Rémy (IEEE, 2023-08-02)
    Virtual education is gaining prominence, providing opportunities for dynamic interactive content, such as Digital Twins, and novel collaboration modalities, including options for remote classrooms. In this work, we present ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales