Predicting compressed earth blocks compressive strength by means of machine learning models
Article dans une revue avec comité de lecture
Date
2024-10Journal
Construction and Building MaterialsAbstract
Compressed Earth Blocks (CEB) are an interesting alternative to conventional masonry units. They are unfired and provide a thermal comfort in the constructions. However, their compressive strength needs to be assessed to ensure a mechanical stability. The latter depends on the soil variability, as well as several manufacturing parameters such as water content, compaction pressure, stabilizer type and proportion. This is challenging as it requires time and effort to adapt the parameters to achieve satisfactory results. In this study, machine learning classification models were trained using historical data for predicting CEB compressive strength. Voting Classifier (VC) provided the highest performance with an accuracy of 78 %. SHapley Additive exPlanations (SHAP) were used to identify and prioritize the features in the model's decision-making process. The compaction pressure and soil granularity were the most decisive parameters. VC was also tested to assess the compressive strength of sediment-based CEB manufactured at the laboratory scale.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureEarth concrete is composed of fine particles which make them very sensitive to humidity and affects their long-term durability. In this study, the effect of wetting/drying cycles on earth concrete according to ASTM D559 ...
-
Article dans une revue avec comité de lectureGIRAUD, Eliane; PACE, Sergio; LECOMTE-BECKERS, Jacqueline (2014)The aim of this work was to determine the ability to produce thin metallic foils by self-induced ion plating. Foils of pure copper and pure zinc with a thickness of 35 μm have been successfully produced and their characteristics ...
-
Article dans une revue avec comité de lectureFERNANDES-NASSAR, Samira; DELPOUVE, Nicolas; SOLLOGOUB, Cyrille; GUINAULT, Alain; STOCLET, Grégory; DOMENEK, Sandra; REGNIER, Gilles (American Chemical Society, 2020)The barrier properties of poly(l-lactide) (PLLA) were investigated in multinanolayer systems, probing the effect of confinement, the compatibility between the confining and the confined polymer, crystal orientation, and ...
-
Article dans une revue avec comité de lectureFERNANDES NASSAR, Samira; GUINAULT, Alain; DELPOUVE, Nicolas; DIVRY, Véronique; DUCRUET, Violette; SOLLOGOUB, Cyrille; DOMENEK, Sandra (Elsevier, 2017)Semicrystalline polylactide (PLA) films with controlled morphology were produced by thermal crystallization to optimize the oxygen barrier properties. The crystalline morphology of PLA at the scales of the lamella and the ...
-
Article dans une revue avec comité de lectureMONNIER, Xavier; FERNANDES NASSAR, Samira; DOMENEK, Sandra; GUINAULT, Alain; SOLLOGOUB, Cyrille; DARGENT, Eric; DELPOUVE, Nicolas (Elsevier, 2018)The physical aging behavior of amorphous polylactide constrained against polystyrene in layers of 300 nm, thanks to the layer–multiplying co–extrusion process, was investigated by fast–scanning calorimetry (FSC). By cooling ...