• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Parsimonious Separated Representation Empowering PINN–PGD-Based Solutions for Parametrized Partial Differential Equations

Article dans une revue avec comité de lecture
Auteur
ccGHNATIOS, Chady
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
1166977 CNRS@CREATE Ltd.

URI
http://hdl.handle.net/10985/25753
DOI
10.3390/math12152365
Date
2024-07
Journal
Mathematics

Résumé

The efficient solution (fast and accurate) of parametric partial differential equations (pPDE) is of major interest in many domains of science and engineering, enabling evaluations of the quantities of interest, optimization, control, and uncertainty propagation—all them under stringent real-time constraints. Different methodologies have been proposed in the past within the model order reduction (MOR) community, based on the use of reduced bases (RB) or the separated representation at the heart of the so-called proper generalized decompositions (PGD). In PGD, an alternate-direction strategy is employed to circumvent the integration issues of operating in multi-dimensional domains. Recently, physics informed neural networks (PINNs), a particular collocation schema where the unknown field is approximated by a neural network (NN), have emerged in the domain of scientific machine learning. PNNs combine the versatility of NN-based approximation with the ease of collocating pPDE. The present paper proposes a combination of both procedures to find an efficient solution for pPDE, that can either be viewed as an efficient collocation procedure for PINN, or as a monolithic PGD that bypasses the use of the fixed-point alternated directions.

Fichier(s) constituant cette publication

Nom:
PIMM_JM_2024_GHNATIOS.pdf
Taille:
2.989Mo
Format:
PDF
Description:
A Parsimonious Separated Repre ...
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • On the High-Resolution Discretization of the Maxwell Equations in a Composite Tape and the Heating Effects Induced by the Dielectric Losses 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; BARASINSKI, Anais; ccCHINESTA SORIA, Francisco (MDPI AG, 2022-01)
    Electromagnetic field propagation inside composite materials represents a challenge where fiber-scale simulation remains intractable using classical simulation methods. The present work proposes an original 3D simulation ...
  • Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application to composites forming processes 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; FALCO, Antonio; DUVAL, Jean-Louis; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2020)
    Non-intrusive approaches for the construction of computational vademecums face different challenges, especially when a parameter variation affects the physics of the problem considerably. In these situations, classical ...
  • Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; HASCOET, Nicolas; ccCUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
  • On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; ccCUETO, Elias; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Wiley, 2020)
    Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
  • On the data-driven modeling of reactive extrusion 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales