• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new methodology for anisotropic yield surface description using model order reduction techniques and invariant neural network

Article dans une revue avec comité de lecture
Author
ccGHNATIOS, Chady
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CAZACU, Oana
21012 Department of Materials Science and Engineering [University of Arizona]
REVIL-BAUDARD, Benoit
21012 Department of Materials Science and Engineering [University of Arizona]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/25772
DOI
10.1016/j.jmps.2024.105542
Date
2024-01
Journal
Journal of the Mechanics and Physics of Solids

Abstract

In this paper, we present a general methodology that we call spectral neural network (SNN) which enables to generate automatically knowing a few datapoints (eight at most), a sound and plausible yield surface for any variations of a given anisotropic material, e.g. batches of the same material or same type of material produced by a different supplier. It relies on the use of a reliable parametrization of a performant analytic orthotropic yield function for the generation of a large database of yield surface shapes and the singular value decomposition method to create a reduced basis. For a specific material, a surrogate model for the reduced basis coordinates is further constructed using few additional datapoints. The dense neural network is built such as to ensure that the invariance requirements dictated by the material symmetry as well as the convexity of the yield surface are automatically enforced. The capabilities of this new methodology are demonstrated for hexagonal closed packed materials titanium materials, which are known to be particularly challenging to model due to their anisotropy and tension–compression asymmetry. Furthermore, we show that the SNN methodology can be extended such as to include variations of multiple materials of vastly different plastic behavior and yield surface shapes. The in-depth analysis presented reveals the benefits and limits of the hybrid data-driven models for description of anisotropic plasticity.

Files in this item

Name:
PIMM_JMPS_2024_GHNATIOS.pdf
Size:
3.826Mb
Format:
PDF
Description:
A new methodology for anisotropic ...
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Sensitivity thermal analysis in the laser-assisted tape placement process 
    Article dans une revue avec comité de lecture
    PEREZ, Marta; BARASINSKI, Anaïs; COURTEMANCHE, Benoît; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (AIMS Press, 2018)
    Nowadays, the production of large pieces made of thermoplastic composites is an industrial challenging issue as there are yet several difficulties associated to their processing. The laserassisted tape placement (LATP) ...
  • On the High-Resolution Discretization of the Maxwell Equations in a Composite Tape and the Heating Effects Induced by the Dielectric Losses 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; BARASINSKI, Anais; ccCHINESTA SORIA, Francisco (MDPI AG, 2022-01)
    Electromagnetic field propagation inside composite materials represents a challenge where fiber-scale simulation remains intractable using classical simulation methods. The present work proposes an original 3D simulation ...
  • Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application to composites forming processes 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; FALCO, Antonio; DUVAL, Jean-Louis; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2020)
    Non-intrusive approaches for the construction of computational vademecums face different challenges, especially when a parameter variation affects the physics of the problem considerably. In these situations, classical ...
  • Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; HASCOET, Nicolas; ccCUETO, Elias; DUVAL, Jean-Louis; KEUNINGS, Roland; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
  • On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; ccCUETO, Elias; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Wiley, 2020)
    Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales