• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new methodology for anisotropic yield surface description using model order reduction techniques and invariant neural network

Article dans une revue avec comité de lecture
Author
ccGHNATIOS, Chady
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CAZACU, Oana
21012 Department of Materials Science and Engineering [University of Arizona]
REVIL-BAUDARD, Benoit
21012 Department of Materials Science and Engineering [University of Arizona]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/25772
DOI
10.1016/j.jmps.2024.105542
Date
2024-01
Journal
Journal of the Mechanics and Physics of Solids

Abstract

In this paper, we present a general methodology that we call spectral neural network (SNN) which enables to generate automatically knowing a few datapoints (eight at most), a sound and plausible yield surface for any variations of a given anisotropic material, e.g. batches of the same material or same type of material produced by a different supplier. It relies on the use of a reliable parametrization of a performant analytic orthotropic yield function for the generation of a large database of yield surface shapes and the singular value decomposition method to create a reduced basis. For a specific material, a surrogate model for the reduced basis coordinates is further constructed using few additional datapoints. The dense neural network is built such as to ensure that the invariance requirements dictated by the material symmetry as well as the convexity of the yield surface are automatically enforced. The capabilities of this new methodology are demonstrated for hexagonal closed packed materials titanium materials, which are known to be particularly challenging to model due to their anisotropy and tension–compression asymmetry. Furthermore, we show that the SNN methodology can be extended such as to include variations of multiple materials of vastly different plastic behavior and yield surface shapes. The in-depth analysis presented reveals the benefits and limits of the hybrid data-driven models for description of anisotropic plasticity.

Files in this item

Name:
PIMM_JMPS_2024_GHNATIOS.pdf
Size:
3.826Mb
Format:
PDF
Description:
A new methodology for anisotropic ...
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Sensitivity thermal analysis in the laser-assisted tape placement process 
    Article dans une revue avec comité de lecture
    PEREZ, Marta; BARASINSKI, Anaïs; COURTEMANCHE, Benoît; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (AIMS Press, 2018)
    Nowadays, the production of large pieces made of thermoplastic composites is an industrial challenging issue as there are yet several difficulties associated to their processing. The laserassisted tape placement (LATP) ...
  • A hybrid twin based on machine learning enhanced reduced order model for real-time simulation of magnetic bearings 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; RODRIGUEZ, Sebastian; TOMEZYK, Jerome; ccMOUTERDE, Joël; ccDUPUIS, Yves; DA SILVA, Joaquim; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-02)
    The simulation of magnetic bearings involves highly non-linear physics, with high dependency on the input variation. Moreover, such a simulation is time consuming and can’t run, within realistic computation time for control ...
  • On the data-driven modeling of reactive extrusion 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...
  • Advanced modeling and simulation of sheet moulding compound (SMC) processes 
    Article dans une revue avec comité de lecture
    PEREZ, Marta; PRONO, David; ccGHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In SMC processes, a charge of a composite material, which typically consists of a matrix composed of an unsaturated polyester or vinylester, reinforced with chopped glass fibres or carbon fi bre bundles and fillers, is ...
  • A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    SIMACEK, Pavel; ADVANI, Suresh G.; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Springer Verlag, 2020)
    In this work we develop a void filling and void motion dynamics model using volatile pressure and squeeze flow during tape placement process. The void motion and filling are simulated using a non-local model where their ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales