• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage

Article dans une revue avec comité de lecture
Auteur
CHEN, Qiang
301676 Xi'an Jiaotong University [Xjtu]
TU, Wenqiong
462211 JiangSu University
WU, Jiajun
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
HE, Zhelong
480877 Hunan University [Changsha] [HNU]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
YANG, Zhibo
301676 Xi'an Jiaotong University [Xjtu]
CHEN, Xuefeng
301676 Xi'an Jiaotong University [Xjtu]

URI
http://hdl.handle.net/10985/25882
DOI
10.1016/j.euromechsol.2024.105506
Date
2024-11
Journal
European Journal of Mechanics - A/Solids

Résumé

We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two custom-tailored networks are harnessed to construct microscopic displacement functions in each phase of composite materials, based on the exact Fourier series solutions of Navier’s displacement differential equations. The fiber and matrix networks are seamlessly connected through a common loss function by enforcing the continuity conditions, in conjunction with periodicity boundary conditions, of both tractions and displacements. These conditions are evaluated on a set of weighted collocation points located on the fiber/matrix interface and the exterior faces of the unit cell, respectively. The partial derivatives of displacements are computed effortlessly through the automatic differentiation functionality. During the training of the FHN model, the total loss function is minimized with respect to the Fourier series parameters using gradient descent and concurrently maximized with respect to the adaptive weights using gradient ascent. The transfer learning technique is employed to speed up the training of new geometries by leveraging a pre-trained model. Comparison with finite-element/volume-based unit cell solutions under various loading scenarios showcases the computational capability of the proposed method. The utility of the proposed technique is further demonstrated by capturing the interfacial debonding in unidirectional composites via a cohesive interface model.

Fichier(s) constituant cette publication

Nom:
LEM3_EJMSOL_2025_MERAGHNI.pdf
Taille:
2.571Mo
Format:
PDF
Fin d'embargo:
2025-06-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHEN, Xuefeng; YANG, Zhibo (Elsevier BV, 2025-01)
    This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of ...
  • Physics-informed deep neural networks towards finite strain homogenization of unidirectional soft composites 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; DU, Xiaoxiao; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; YANG, Zhibo (Elsevier BV, 2025-11)
    The presence of heterogeneities and significant property mismatches in soft composites lead to complex be­ haviors that are challenging to model with conventional analytical or numerical homogenization techniques. The ...
  • Deep homogenization networks for elastic heterogeneous materials with two- and three-dimensional periodicity 
    Article dans une revue avec comité de lecture
    WU, Jiajun; JIANG, Jindong; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2023-12)
    We present a deep learning framework that leverages computational homogenization expertise to predict the local stress field and homogenized moduli of heterogeneous materials with two- and three-dimensional periodicity, ...
  • Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites 
    Article dans une revue avec comité de lecture
    JIANG, Jindong; WU, Jiajun; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2023-05)
    Elements of the periodic homogenization framework and deep neural network were seamlessly connected for the first time to construct a new micromechanics theory for thermoconductive composites called physically informed ...
  • Adaptive deep homogenization theory for periodic heterogeneous materials 
    Article dans une revue avec comité de lecture
    WU, Jiajun; CHEN, Qiang; JIANG, Jindong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2024-07)
    We present an adaptive physics-informed deep homogenization neural network (DHN) approach to formulate a full-field micromechanics model for elastic and thermoelastic periodic arrays with different microstructures. The ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales