• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces

Article dans une revue avec comité de lecture
Auteur
CHEN, Qiang
301676 Xi'an Jiaotong University [Xjtu]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHEN, Xuefeng
301676 Xi'an Jiaotong University [Xjtu]
YANG, Zhibo
301676 Xi'an Jiaotong University [Xjtu]

URI
http://hdl.handle.net/10985/25884
DOI
10.1016/j.engappai.2024.109735
Date
2025-01
Journal
Engineering Applications of Artificial Intelligence

Résumé

This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of porosities under general loading conditions. Notably, it accounts for the surface elasticity effect, utilizing the Gurtin-Murdoch interface theory. First of all, a fully connected neural network model is established that maps the spatial coordinates, passing first through several sinusoidal functions, to the microscopic displacements. The loss function is formulated as the weighted sum of residuals of Navier-Cauchy equations in the bulk domains and the Young-Laplace equations on the energetic surfaces, evaluated on separate sets of collocation points. To more effectively predict stress concentrations inside the microstructures, we introduce fully trainable weights to each collocation point. The capacity and effectiveness of the new homogenization technique for capturing the size-dependent local and global response of nanocomposites with distinct pore sizes and shapes are verified upon extensive comparisons with the finite-element benchmark results, under various loading conditions. New results showcase the proposed theory’s ability to model random distributions of nano-porosities with a high degree of accuracy, a task not easily achievable with alternative techniques except for the specialized finite-element method.

Fichier(s) constituant cette publication

Nom:
LEM3_EAAI_2025_MERAGHNI.pdf
Taille:
20.99Mo
Format:
PDF
Fin d'embargo:
2025-08-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)
    We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ...
  • Physics-informed deep neural networks towards finite strain homogenization of unidirectional soft composites 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; DU, Xiaoxiao; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; YANG, Zhibo (Elsevier BV, 2025-11)
    The presence of heterogeneities and significant property mismatches in soft composites lead to complex be­ haviors that are challenging to model with conventional analytical or numerical homogenization techniques. The ...
  • Nitsche's method enhanced isogeometric homogenization of unidirectional composites with cylindrically orthotropic carbon/graphite fibers 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)
    An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
  • Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; CHATZIGEORGIOU, George; ROBERT, Gilles; ccMERAGHNI, Fodil (Elsevier BV, 2022)
    In this paper, an original probabilistic micromechanics damage framework involving multi-deformation mechanisms, based on the modified Mori-Tanaka and Transformation Field Analysis (MT-TFA) techniques, is developed to ...
  • Hybrid Hierarchical Homogenization Theory for Unidirectional CNTs-Coated Fuzzy Fiber Composites Undergoing Inelastic Deformations 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; CHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier BV, 2021)
    A new hybrid homogenization approach is proposed for simulating the homogenized and local response of unidirectional fuzzy fiber nanocomposites undergoing inelastic deformations. Fuzzy fiber composites are hier­archical ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales