Convolutional Neural Network for the Classification of the Control Mode of Grid-Connected Power Converters
Article dans une revue avec comité de lecture
Auteur
OUALI, Rabah
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
LEGRY, Martin
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
405582 L2EP - Équipe Réseaux
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
405582 L2EP - Équipe Réseaux
DIEULOT, Jean-Yves
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
YIM, Pascal
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
410272 Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Résumé
With the integration of power converters into the power grid, it becomes crucial for the Transmission System Operator (TSO) to ascertain whether they are operating in Grid Forming or Grid Following modes. Due to intellectual properties, classification can only be performed based on non-intrusive measurements and models, such as admittance at the PCC. This classification poses a challenge as the TSO lacks precise knowledge of the actual control structures and algorithms. This paper introduces a novel classification algorithm based on Convolutional Neural Networks (CNN), capable of detecting patterns in sequential data. The proposed CNN utilizes a new architecture to separate admittances along the d and q axes, and a decision layer allows to determine the correct converter mode. The performance of the proposed CNN model was assessed through two tests and compared to the traditional feedforward model. The proposed CNN architecture demonstrates significant classification capabilities, as it is able to identify the control mode of the converter even when its control structure is not part of the training dataset.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteLEGRY, Martin; COLAS, Frédéric; SAUDEMONT, Christophe; DIEULOT, Jean-Yves; DUCARME, Olivier (IEEE, 2018)This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and ...
-
Article dans une revue avec comité de lectureLEGRY, Martin; DIEULOT, Jean-Yves; COLAS, Frederic; SAUDEMONT, Christophe; DUCARME, Olivier (Institute of Electrical and Electronics Engineers (IEEE), 2020)Interconnecting microgrids in LV power system presents appealing features such as self-healing or power quality. When networked microgrids are not connected to a strong utility grid, their Point of Common Coupling (PCC) ...
-
Communication avec acteLEGRY, Martin; COLAS, Frédéric; SAUDEMONT, Christophe; DIEULOT, Jean-Yves; DUCARME, Olivier (IEEE, 2019)This paper proposes to optimize the real time operation of a microgrid controlled with a two-layer Model Predictive Controller supervisor. Based on the classical decomposition of control level, the proposed supervisor ...
-
Article dans une revue avec comité de lectureMORIN, J.; COLAS, Frédéric; DIEULOT, Jean-Yves; GRENARD, S.; GUILLAUD, Xavier (Springer, 2018)This paper addresses the relevance of using reactive power from Medium Voltage (MV) networks to support the voltages of a High Voltage (HV) rural network in real-time. The selection and analysis of different optimal ...
-
Article dans une revue avec comité de lectureBUIRE, Jerome; COLAS, Frédéric; DIEULOT, Jean-Yves; DE ALVARO, Leticia; GUILLAUD, Xavier (Institute of Electrical and Electronics Engineers, 2019)Distributed generators (DGs) reactive powers are controlled to mitigate voltage overshoots in distribution grids with stochastic power production and consumption. Classical DGs controllers may embed piecewise affine laws ...