• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radiated Sound and Transmitted Vibration Following the Ball/Racket Impact of a Tennis Serve

Article dans une revue avec comité de lecture
Author
ccPATÉ, Arthur
1066983 Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
1059196 JUNIA [JUNIA]
PETEL, Maxime
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
BELHASSEN, Nesrine
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ccCHADEFAUX, Delphine
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]

URI
http://hdl.handle.net/10985/26207
DOI
10.3390/vibration7040047
Date
2024-09
Journal
Vibration

Abstract

Shock-induced vibrations transmitted from the racket to the tennis player’s upper limb have interested researchers, whether for investigating their effect on injury risk, or for designing new equipment. Measuring these vibrations is, however, very challenging in an ecological playing situation: sensors must be of very high quality in order to precisely measure high-energy and broad-frequency signals, as well as non-invasive in order to allow the players to perform their usual movements. The working hypothesis of this paper is that contactless sound recordings of the ball/racket impact carry the same information as direct vibratory measurements. The present study focuses on the tennis serve, as being tennis’ most energy-demanding stroke, therefore possibly being the most traumatic stroke for the upper limb. This article aims (a) to evaluate the propagation of vibration from the racket to the upper limb; and (b) to identify correlations with acoustic signals collected simultaneously. Eight expert tennis players performed serves with three rackets and two ball spin effects. Accelerometers measured the vibration on the racket and at five locations on the upper limb, and a microphone measured the impact sound. Resulting signals were analyzed in terms of energy and spectral descriptors. Results showed that flat serves produced louder sounds, higher vibration levels, lower acoustic spectral centroids, and higher vibratory spectral centroids than kick serves. The racket only had a marginal influence. Similarities between acoustic and vibratory measurements were found (levels were correlated), but so were differences (spectral centroids tended to be negatively correlated), encouraging further studies on the link between sound and vibration for the in situ measurement of shock-induced vibration.

Files in this item

Name:
IBHGC_V_2024_PETEL.pdf
Size:
3.455Mb
Format:
PDF
Description:
Radiated Sound and Transmitted ...
View/Open
CC BY
This document is available under CC BY license

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Forearm muscles activity of harp players 
    Article dans une revue avec comité de lecture
    ccCHADEFAUX, Delphine; ccPOTHRAT, Claude; SHAYEGAN, S.; ccLE CARROU, Jean-Loïc (Taylor & Francis, 2023-09)
    The practice of a musical instrument requires fine dexterity, repetitive, fast, and precise movements, as well as important efforts to set the instrument into vibration, while adopting postures often unnatural for ...
  • 3D propagation of the shock-induced vibrations through the whole lower-limb during running 
    Article dans une revue avec comité de lecture
    CHADEFAUX, Delphine; GUEGUEN, N.; THOUZE, A.; RAO, G. (Elsevier, 2019)
    Shock-induced vibrations to the feet have been related to the feel of comfort, the biomechanical control of performance, and the risk of fatigue or injury. Up to recently, the complexity of measuring the human biodynamic ...
  • Development of a two-dimensional dynamic model of the foot-ankle system exposed to vibration 
    Article dans une revue avec comité de lecture
    CHADEFAUX, Delphine; GOGGINS, K.; CAZZANIGA, C.; MARZAROLI, Pietro; MARELLI, Stefano; KATZ, R.; EGER, T.; TARABINI, M. (Elsevier, 2020)
    Workers in mining, mills, construction and some types of manufacturing are exposed to vibration that enters the body through the feet. Exposure to foot-transmitted vibration (FTV) is associated with an increased risk of ...
  • Vibration transmissibility and apparent mass changes from vertical whole-body vibration exposure during stationary and propelled walking 
    Article dans une revue avec comité de lecture
    CHADEFAUX, Delphine; MOORHEAD, Alex P.; MARZAROLI, Pietro; MARELLI, Stefano; MARCHETTI, Enrico; TARABINI, Marco (Elsevier, 2021)
    Whole-Body Vibration (WBV) is an occupational hazard affecting employees working with transportation, construction or heavy machinery. To minimize vibration-induced pathologies, ISO identified WBV exposure limits based on ...
  • Stringing and dynamics effects on forearm muscular activity during harp playing 
    Article dans une revue avec comité de lecture
    ccCHADEFAUX, Delphine; POTHRAT, C.; ccLE CARROU, Jean-Loïc (Taylor & Francis, 2020-11)
    The practice of a musical instrument requires fine dexterity, repetitive, fast, and precise move­ments, as well as important efforts to set the instrument into vibration, while adopting postures often unnatural for the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales