• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physics-informed deep neural networks towards finite strain homogenization of unidirectional soft composites

Article dans une revue avec comité de lecture
Author
CHEN, Qiang
301676 Xi'an Jiaotong University [Xjtu]
DU, Xiaoxiao
411674 Beihang University [BUAA]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ZHAO, Gang
411674 Beihang University [BUAA]
YANG, Zhibo
301676 Xi'an Jiaotong University [Xjtu]

URI
http://hdl.handle.net/10985/26510
DOI
10.1016/j.euromechsol.2025.105752
Date
2025-11
Journal
European Journal of Mechanics - A/Solids

Abstract

The presence of heterogeneities and significant property mismatches in soft composites lead to complex be­ haviors that are challenging to model with conventional analytical or numerical homogenization techniques. The present work introduces a micromechanics-informed deep learning framework to characterize microscopic dis­placements and stress fields in soft composites with periodic microstructures undergoing finite deformation. The main obstacle we address is the construction of specific loss functions incorporating intricate knowledge of finite strain homogenization theory, which is valid for arbitrary macroscopic deformation gradients. Notably, a multi-network model is utilized to describe the discontinuities in material properties and solution fields within the composites. These neural networks communicate with each other through interface traction and displacement continuity conditions within the loss function. In addition, to exactly impose the periodicity boundary in hex­agonal and square unit cells, the neural network architectures are modified by incorporating a number of trainable harmonic functions. A significant advantage of the current framework is that it allows for a straight­ forward solution of the governing partial differential equations expressed in terms of the first Piola-Kirchhoff stresses, eliminating the need for iterative formulations of the residual vector and tangent matrix required by classical numerical methods. We extensively assess the effectiveness of the proposed approach upon extensive comparison with isogeometric analysis to determine the displacement and Cauchy stress fields in square and hexagonal arrays of fibers/porosities, demonstrating neural networks as a powerful alternative to the conven­tional numerical approaches in finite deformation analysis of microstructural materials.

Files in this item

Name:
LEM3_EJMSOL_MERAGHNI.pdf
Size:
12.82Mb
Format:
PDF
Embargoed until:
2026-07-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Nitsche's method enhanced isogeometric homogenization of unidirectional composites with cylindrically orthotropic carbon/graphite fibers 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)
    An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
  • Isogeometric homogenization of viscoelastic polymer composites via correspondence principle 
    Article dans une revue avec comité de lecture
    ccCHEN, Qiang; DU, Xiaoxiao; WANG, Wei; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang (Elsevier BV, 2023-11)
    We present an isogeometric homogenization theory (IGH) for efficiently identifying homogenized and local creep and relaxation response of linearly viscoelastic polymer composites with different microstructural parameters. ...
  • Isogeometric homogenization of unidirectional nanocomposites with energetic surfaces 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; WANG, Wei; ZHAO, Gang (Springer Science and Business Media LLC, 2024-04)
    The present work aims to propose an interface-enriched isogeometric analysis strategy for predicting the size-dependent effective moduli and local stress field of periodic arrays of nanosize inhomogeneity. The proposed ...
  • Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)
    We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ...
  • Physics-informed deep homogenization approach for random nanoporous composites with energetic interfaces 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHEN, Xuefeng; YANG, Zhibo (Elsevier BV, 2025-01)
    This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales