Physics-informed deep neural networks towards finite strain homogenization of unidirectional soft composites
Article dans une revue avec comité de lecture
Date
2025-11Journal
European Journal of Mechanics - A/SolidsRésumé
The presence of heterogeneities and significant property mismatches in soft composites lead to complex be haviors that are challenging to model with conventional analytical or numerical homogenization techniques. The present work introduces a micromechanics-informed deep learning framework to characterize microscopic displacements and stress fields in soft composites with periodic microstructures undergoing finite deformation. The main obstacle we address is the construction of specific loss functions incorporating intricate knowledge of finite strain homogenization theory, which is valid for arbitrary macroscopic deformation gradients. Notably, a multi-network model is utilized to describe the discontinuities in material properties and solution fields within the composites. These neural networks communicate with each other through interface traction and displacement
continuity conditions within the loss function. In addition, to exactly impose the periodicity boundary in hexagonal and square unit cells, the neural network architectures are modified by incorporating a number of trainable harmonic functions. A significant advantage of the current framework is that it allows for a straight forward solution of the governing partial differential equations expressed in terms of the first Piola-Kirchhoff stresses, eliminating the need for iterative formulations of the residual vector and tangent matrix required by classical numerical methods. We extensively assess the effectiveness of the proposed approach upon extensive comparison with isogeometric analysis to determine the displacement and Cauchy stress fields in square and
hexagonal arrays of fibers/porosities, demonstrating neural networks as a powerful alternative to the conventional numerical approaches in finite deformation analysis of microstructural materials.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureDU, Xiaoxiao; CHEN, Qiang;
CHATZIGEORGIOU, George;
MERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)
An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ... -
Article dans une revue avec comité de lecture
CHEN, Qiang; DU, Xiaoxiao; WANG, Wei;
CHATZIGEORGIOU, George;
MERAGHNI, Fodil; ZHAO, Gang (Elsevier BV, 2023-11)
We present an isogeometric homogenization theory (IGH) for efficiently identifying homogenized and local creep and relaxation response of linearly viscoelastic polymer composites with different microstructural parameters. ... -
Article dans une revue avec comité de lectureDU, Xiaoxiao; CHEN, Qiang;
CHATZIGEORGIOU, George;
MERAGHNI, Fodil; WANG, Wei; ZHAO, Gang (Springer Science and Business Media LLC, 2024-04)
The present work aims to propose an interface-enriched isogeometric analysis strategy for predicting the size-dependent effective moduli and local stress field of periodic arrays of nanosize inhomogeneity. The proposed ... -
Article dans une revue avec comité de lectureCHEN, Qiang; TU, Wenqiong; WU, Jiajun; HE, Zhelong;
CHATZIGEORGIOU, George;
MERAGHNI, Fodil; YANG, Zhibo; CHEN, Xuefeng (Elsevier BV, 2024-11)
We present a novel elasticity-inspired data-driven Fourier homogenization network (FHN) theory for periodic heterogeneous microstructures with square or hexagonal arrays of cylindrical fibers. Towards this end, two ... -
Article dans une revue avec comité de lectureCHEN, Qiang;
CHATZIGEORGIOU, George;
MERAGHNI, Fodil; CHEN, Xuefeng; YANG, Zhibo (Elsevier BV, 2025-01)
This contribution presents a new physics-informed deep homogenization neural network model for identifying local displacement and stress fields, as well as homogenized moduli, of nanocomposites with periodic arrays of ...