• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model order reduction of an electro-quasistatic problem using CLN method

Article dans une revue avec comité de lecture
Auteur
CHEN, Wei
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
HENNERON, Thomas
544873 L2EP - Équipe Outils et Méthodes Numériques [OMN]
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
CLÉNET, Stéphane
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
544873 L2EP - Équipe Outils et Méthodes Numériques [OMN]
DELAGNES, Théo
528427 ElectRotechnique et MEcanique des Structures [EDF R&D ERMES]
ZOU, Jun
24050 Tsinghua University [Beijing] [THU]

URI
http://hdl.handle.net/10985/26702
DOI
10.1016/j.finel.2024.104185
Date
2024-10
Journal
Finite Elements in Analysis and Design

Résumé

The Cauer ladder network (CLN) method, as proposed by Kameari et al. (2018), has been extensively studied to construct a reduced model of magneto-quasistatic (MQS) Finite Element (FE) models. In this case, this method enables the construction of an equivalent electrical circuit based on resistances and inductances as well as a reduced basis where the solution of a reduced problem is sought. In this article, we propose to extend the applicability of the CLN method to the development of reduced models for FE electro-quasistatic (EQS) models. It appears that the derivation of the reduction of an EQS model is not similar to the one of an MQS model. After development, the process of reduction using CLN leads to consider two electrical circuits based on the cascade association of resistances and capacitances. Each circuit is associated with a reduced basis constructed by applying the self-adjoint Lanczos method. The reduced solution to the EQS problem is got by first solving the circuit equations to determine the voltages and the currents at the terminals of the resistances and capacitances. Then, the approximated solution of the FE EQS model is got by a linear combination of the vectors of the two reduced bases weighted by the currents (or the voltages) previously calculated. An error estimator is also derived, enabling to calculate the distance between the reduced solution and the FE solution without solving the FE model. The proposed approach has been applied on an industrial application, a resin-impregnated paper bushing, in order to evaluate the accuracy in function of the size of the reduced bases as well as the efficiency in terms of computation time.

Fichier(s) constituant cette publication

Nom:
L2EP_FEAD_2024_CHEN.pdf
Taille:
2.577Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Comparison of parametric model order reduction methods to solve magneto-quasistatic and electro-quasistatic problems 
    Article dans une revue avec comité de lecture
    CHEN, Wei; ccHENNERON, Thomas; ccCLENET, Stephane (Elsevier, 2025-12)
    In this paper, we compare two parametric model order reduction methods, the multi-moment matching method and the interpolation of projection subspaces method for the magneto-quasistatic (MQS) and electro-quasistatic (EQS) ...
  • A Novel and General Approach for Solving the Ion-Flow Field Problem by a Regularization Technique 
    Article dans une revue avec comité de lecture
    CHENG, QiWen; ZOU, Jun; ccCLENET, Stephane (Institute of Electrical and Electronics Engineers (IEEE), 2021-12)
    In order to have a better convergence and accuracy for solving the ion-flow field problem, a novel and general numerical approach is proposed. In the past, the framework of the traditional mesh based method has a dilemma ...
  • Error Estimation of the Cauer Ladder Network Method for the Time-Domain Analysis and Its Application to a Multiport System 
    Article dans une revue avec comité de lecture
    ccTOBITA, Miwa; CLÉNET, Stéphane; HIRUMA, Shingo; CHEN, Wei; MATSUO, Tetsuji (Institute of Electrical and Electronics Engineers (IEEE), 2024-12)
    The Cauer ladder network (CLN) method can accelerate eddy current field analysis of electromagnetic devices in the time domain by reducing the order of the finite element (FE) model. To control its accuracy, the reduction ...
  • Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods 
    Communication avec acte
    PIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stéphane; ccCLENET, Stephane (IEEE, 2015)
    The proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example ...
  • Optimisation process to solve multirate system 
    Article dans une revue avec comité de lecture
    PIERQUIN, Antoine; HENNERON, Thomas; BRISSET, Stephane; ccCLENET, Stephane (Wydawnictwo Czasopism i Ksia̜żek Technicznych Sigma, 2015)
    The modelling of a multirate system -composed of components with heterogeneous time constants- can be done using fixed-point method. This method allows a time-discretization of each subsystem with respect to its own time ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales