• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated classification of subsurface impact damage in thermoplastic composites using depth-resolved terahertz imaging and deep learning

Article dans une revue avec comité de lecture
Author
SILITONGA, Dicky J.
24541 Georgia Tech Lorraine [Metz]
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
POMARÈDE, Pascal
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
BAWANA, Niyem M.
301990 Georgia Institute of Technology [Atlanta]
SHI, Haolian
24541 Georgia Tech Lorraine [Metz]
301990 Georgia Institute of Technology [Atlanta]
DECLERCQ, Nico F.
216445 George W. Woodruff School of Mechanical Engineering
301990 Georgia Institute of Technology [Atlanta]
24541 Georgia Tech Lorraine [Metz]
CITRIN, D. S.
24541 Georgia Tech Lorraine [Metz]
301990 Georgia Institute of Technology [Atlanta]
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
LOCQUET, Alexandre
24541 Georgia Tech Lorraine [Metz]
301990 Georgia Institute of Technology [Atlanta]

URI
http://hdl.handle.net/10985/26881
DOI
10.1016/j.compositesb.2025.113033
Date
2026-01
Journal
Composites Part B

Abstract

Reliable detection of barely visible impact damage is critical to ensure the structural integrity of composite components in service, particularly in safety-critical applications such as pressure vessels and transportation systems. This study presents a solution for detecting such damage in woven glass fiber-reinforced thermoplastic composites using terahertz (THz) time-of-flight tomography and convolutional neural networks. THz provides non-contact, non-ionizing, high-axial-resolution imaging of subsurface and back-surface damage, addressing key limitations of surface-based inspection methods. While THz imaging alone may not always permit conclusive damage identification, we bridge this gap by training neural network classifiers on depth-resolved THz B-scan images using ground truth from co-located X-ray micro-computed tomography. Among several pretrained architectures tested via transfer learning, DenseNet-121 exhibits the highest accuracy. The model remains robust even when trained on truncated B-scans excluding surface indentation features, confirming its ability to detect structural anomalies located internally or on the back surface. This is particularly relevant for applications where back-side access is not feasible. Experimental validation is performed on impacted glass-fiber-reinforced thermoplastic coupons prepared in accordance with ASTM D7136, with damage severity quantified through force–displacement data and micro-tomographic analysis. Labeling for supervised learning conforms to acceptance criteria from industrial standards for composite pressure vessels (ASME BPVC Section X, CGA C-6.2), ensuring regulatory alignment and enabling deployment in quality control workflows. The proposed method minimizes the need for expert interpretation or secondary validation and offers direct applicability to in-service inspection and manufacturing quality control.

Files in this item

Name:
LEM3_COMPB_2025_MERAGHNI.pdf
Size:
5.259Mb
Format:
PDF
Embargoed until:
2026-08-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Detection of Low-Velocity Impact Damage in Woven-Fabric Reinforced Thermoplastic Composite Laminates by Deep-Learning Classification Trained on Terahertz-Imaging Data 
    Communication avec acte
    SILITONGA, Dicky J.; ccPOMAREDE, Pascal; BAWANA, Niyem M.; SHI, Haolian; DECLERCQ, Nico F.; CITRIN, D.S.; ccMERAGHNI, Fodil; LOCQUET, Alexandre (Association Française de Mécanique (AFM), 2025-08)
    Terahertz (THz) imaging is gaining attention as a nondestructive testing technique for assessing damage due to its high axial resolution and nonionizing nature, presenting a promising alternative to conventional methods ...
  • Application of Ultrasonic Coda Wave Interferometry for Micro-cracks Monitoring in Woven Fabric Composites 
    Article dans une revue avec comité de lecture
    POMARÈDE, Pascal; CHEHAMI, Lynda; DECLERCQ, Nico Felicien; ccMERAGHNI, Fodil; DONG, Junliang; LOCQUET, Alexandre; CITRIN, D. S. (Springer Verlag, 2019)
    The consequences of a four-point bending test, up to 12 mm, are examined by emitting 1 MHz ultrasonic guided waves in woven carbon fiber reinforced polymer specimens, using coda wave interferometry (CWI), revealing a ...
  • Visualization of subsurface damage in woven carbon fiber-reinforced composites using polarization-sensitive terahertz imaging 
    Article dans une revue avec comité de lecture
    DONG, Junliang; POMARÈDE, Pascal; CHEHAMI, Lynda; LOCQUET, Alexandre; ccMERAGHNI, Fodil; DECLERCQ, Nico F.; CITRIN, D.S. (Elsevier, 2018)
    Polarization-sensitive terahertz imaging is applied to characterize subsurface damage in woven carbon fiber-reinforced composite laminates in this study. Terahertz subsurface spectral imaging based on terahertz deconvolution ...
  • Determination of the process-induced microstructure of woven glass fabric reinforced polyamide 6.6/6 composite using terahertz pulsed imaging 
    Article dans une revue avec comité de lecture
    CALVO-DE LA ROSA, J.; ccPOMAREDE, Pascal; ANTONIK, P.; ccMERAGHNI, Fodil; CITRIN, D.S.; RONTANI, D.; LOCQUET, A. (Elsevier BV, 2023-06)
    Terahertz pulsed imaging, combined with spatial and temporal signal and image processing, is performed to visualize the woven fabric in the various plies of glass-fiber-reinforced polymer laminates and to determine ...
  • Investigation of Damage in Composites Using Nondestructive Nonlinear Acoustic Spectroscopy 
    Article dans une revue avec comité de lecture
    ECKEL, Sebastian; ccMERAGHNI, Fodil; POMAREDE, Pascal; DECLERCQ, Nico Felicien (Society for Experimental Mechanics, 2016)
    The presented experimental work describes the nondestructive damage examination of polymer-matrix composites using acoustic methods under the consideration of nonlinear effects. The aim is to analyze these nonlinear effects ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales