• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated classification of subsurface impact damage in thermoplastic composites using depth-resolved terahertz imaging and deep learning

Article dans une revue avec comité de lecture
Author
ccSILITONGA, Dicky Januarizky
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccPOMAREDE, Pascal
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccBAWANA, Niyem Mawenbe
301990 Georgia Institute of Technology [Atlanta]
ccSHI, Haolian
301990 Georgia Institute of Technology [Atlanta]
ccDECLERCQ, Nico
24541 Georgia Tech Lorraine [Metz]
ccCITRIN, David
24541 Georgia Tech Lorraine [Metz]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccLOCQUET, Alexandre
24541 Georgia Tech Lorraine [Metz]

URI
http://hdl.handle.net/10985/27143
DOI
10.1016/j.compositesb.2025.113033
Date
2026-01
Journal
Composites Part B: Engineering

Abstract

Reliable detection of barely visible impact damage is critical to ensure the structural integrity of composite components in service, particularly in safety-critical applications such as pressure vessels and transportation systems. This study presents a solution for detecting such damage in woven glass fiber-reinforced thermoplastic composites using terahertz (THz) time-of-flight tomography and convolutional neural networks. THz provides non-contact, non-ionizing, high-axial-resolution imaging of subsurface and back-surface damage, addressing key limitations of surface-based inspection methods. While THz imaging alone may not always permit conclusive damage identification, we bridge this gap by training neural network classifiers on depth-resolved THz B-scan images using ground truth from co-located X-ray micro-computed tomography. Among several pretrained architectures tested via transfer learning, DenseNet-121 exhibits the highest accuracy. The model remains robust even when trained on truncated B-scans excluding surface indentation features, confirming its ability to detect structural anomalies located internally or on the back surface. This is particularly relevant for applications where back-side access is not feasible. Experimental validation is performed on impacted glass-fiber-reinforced thermoplastic coupons prepared in accordance with ASTM D7136, with damage severity quantified through force–displacement data and micro-tomographic analysis. Labeling for supervised learning conforms to acceptance criteria from industrial standards for composite pressure vessels (ASME BPVC Section X, CGA C-6.2), ensuring regulatory alignment and enabling deployment in quality control workflows. The proposed method minimizes the need for expert interpretation or secondary validation and offers direct applicability to in-service inspection and manufacturing quality control.

Files in this item

Name:
LEM3-Composite-Pomarede-2026.pdf
Size:
27.73Mb
Format:
PDF
Embargoed until:
2026-06-30
View/Open

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Automated classification of subsurface impact damage in thermoplastic composites using depth-resolved terahertz imaging and deep learning 
    Article dans une revue avec comité de lecture
    SILITONGA, Dicky J.; POMARÈDE, Pascal; BAWANA, Niyem M.; SHI, Haolian; DECLERCQ, Nico F.; CITRIN, D. S.; MERAGHNI, Fodil; LOCQUET, Alexandre (Elsevier, 2026-01)
    Reliable detection of barely visible impact damage is critical to ensure the structural integrity of composite components in service, particularly in safety-critical applications such as pressure vessels and transportation ...
  • Detection of Low-Velocity Impact Damage in Woven-Fabric Reinforced Thermoplastic Composite Laminates by Deep-Learning Classification Trained on Terahertz-Imaging Data 
    Communication avec acte
    SILITONGA, Dicky J.; ccPOMAREDE, Pascal; BAWANA, Niyem M.; SHI, Haolian; DECLERCQ, Nico F.; CITRIN, D.S.; ccMERAGHNI, Fodil; LOCQUET, Alexandre (Association Française de Mécanique (AFM), 2025-08)
    Terahertz (THz) imaging is gaining attention as a nondestructive testing technique for assessing damage due to its high axial resolution and nonionizing nature, presenting a promising alternative to conventional methods ...
  • Application of Ultrasonic Coda Wave Interferometry for Micro-cracks Monitoring in Woven Fabric Composites 
    Article dans une revue avec comité de lecture
    POMARÈDE, Pascal; CHEHAMI, Lynda; DECLERCQ, Nico Felicien; ccMERAGHNI, Fodil; DONG, Junliang; LOCQUET, Alexandre; CITRIN, D. S. (Springer Verlag, 2019)
    The consequences of a four-point bending test, up to 12 mm, are examined by emitting 1 MHz ultrasonic guided waves in woven carbon fiber reinforced polymer specimens, using coda wave interferometry (CWI), revealing a ...
  • Visualization of subsurface damage in woven carbon fiber-reinforced composites using polarization-sensitive terahertz imaging 
    Article dans une revue avec comité de lecture
    DONG, Junliang; POMARÈDE, Pascal; CHEHAMI, Lynda; LOCQUET, Alexandre; ccMERAGHNI, Fodil; DECLERCQ, Nico F.; CITRIN, D.S. (Elsevier, 2018)
    Polarization-sensitive terahertz imaging is applied to characterize subsurface damage in woven carbon fiber-reinforced composite laminates in this study. Terahertz subsurface spectral imaging based on terahertz deconvolution ...
  • Ultrasonic guided waves interaction with cracks in the front glass of thin-film solar photovoltaic module 
    Article dans une revue avec comité de lecture
    SILITONGA, Dicky; DECLERCQ, Nico F.; POMARÈDE, Pascal; ccMERAGHNI, Fodil; BOUSSERT, Bertrand; DUBEY, Pooja (Elsevier BV, 2023-03)
    As the solar photovoltaics power system sees rapid growth in installed capacity and plays a significant role in the future global energy mix, its reliability becomes a crucial factor in maintaining the stability of the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales