• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Void shape and orientation effects on anisotropic porous material formability

Article dans une revue avec comité de lecture
Auteur
ccNASIR, Muhammad Waqar
478133 University of Engineering & Technology Lahore [UET]
MUZAMMIL, Shuraim
478133 University of Engineering & Technology Lahore [UET]
ccCHALAL, Hocine
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/27103
DOI
10.1016/j.ijmecsci.2025.110902
Date
2025-12
Journal
International Journal of Mechanical Sciences

Résumé

This study investigates the influence of void shape and orientation on the Forming Limit Diagrams (FLDs) of porous materials with non-quadratic anisotropy. The constitutive framework integrates the Gologanu–Leblond–Devaux (GLD) damage model, which accounts for void morphology, with Barlat’s YLD-2004-18p non-quadratic yield criterion to capture metal matrix plastic anisotropy. The combined GLD-YLD model is further coupled with the Marciniak–Kuczyński (M–K) imperfection approach to predict FLDs for anisotropic sheet metals. Results demonstrate that void morphology considerably affects formability, with prolate (needle-like) voids enhancing material ductility, as compared to oblate (plate-like) voids, while spherical voids yield an intermediate behavior. Furthermore, the study highlights that the impact of material orientation on formability involves a complex interplay of several factors, which include coupled matrix-induced and void-shape-induced anisotropy, the relative angle between the rolling direction and void orientation, and void nucleation mechanism. The model predictive capabilities are assessed against experimental FLD data for two aluminum alloys. Although these alloys show only slight sensitivity to void morphology, due to low porosity, the void shape-dependent anisotropic GLD-YLD model better captures the experimental trends as compared to the undamaged isotropic von Mises model, which overly overestimates formability on the right-hand side of FLD. The role of isotropic hardening is also examined, which shows that higher hardening improves formability, and the effect is smallest for oblate voids under balanced biaxial loading. These findings underscore the importance of incorporating both damage and matrix-induced anisotropy in constitutive modeling for accurate FLD prediction.

Fichier(s) constituant cette publication

Nom:
LEM3_IJMS_2025_CHALAL_ABED-MER ...
Taille:
3.523Mo
Format:
PDF
Description:
Article de Journal Scientifique ...
Fin d'embargo:
2026-06-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Formability prediction using bifurcation criteria and GTN damage model 
    Article dans une revue avec comité de lecture
    NASIR, Muhammad Waqar; ccCHALAL, Hocine; ccABED-MERAIM, Farid (Elsevier BV, 2021)
    In this paper, four plastic instability criteria, which are based on the bifurcation theory, are coupled with the GTN damage model for the prediction of diffuse and localized necking. General bifurcation (GB) criterion and ...
  • Formability limit prediction of TRIP780 steel sheet using lode angle dependent gurson-based models with Thomason coalescence criterion and bifurcation analysis 
    Communication avec acte
    NASIR, Muhammad Waqar; ccCHALAL, Hocine; ccABED-MERAIM, Farid (AIP Publishing, 2019)
    For biaxial stretching strain paths, which are typically encountered in sheet metal forming, the stress triaxiality ranges from 0.33 to 0.67. At this low level of triaxiality, voids change their shape from spherical to ...
  • Comparison between the Marciniak and Kuczyński imperfection approach and bifurcation theory in the prediction of localized necking for porous ductile materials 
    Article dans une revue avec comité de lecture
    NASIR, Muhammad Waqar; ccCHALAL, Hocine; ccABED-MERAIM, Farid (Springer Science and Business Media LLC, 2021)
    To prevent the occurrence of localized necking, the concept of forming limit diagram is often used, thus playing an important role in sheet metal forming processes. The aim of the present study is to develop a numerical ...
  • Prediction of forming limits for porous materials using void-size dependent model and bifurcation approach 
    Article dans une revue avec comité de lecture
    NASIR, Muhammad Waqar; ccCHALAL, Hocine; ccABED-MERAIM, Farid (Springer Verlag, 2020)
    The scientific literature has shown the strong effect of void size on material response. Several yield functions have been developed to incorporate the void size effects in ductile porous materials. Based on the interface ...
  • Evaluation of a new solid-shell finite element on the simulation of sheet metal forming processes 
    Communication avec acte
    ccCHALAL, Hocine; SALAHOUELHADJ, Abdellah; ccABED-MERAIM, Farid (Wiley, 2012)
    In this paper, the performance of the solid-shell finite element SHB8PS is assessed in the context of sheet metal forming simulation using anisotropic elastic-plastic behavior models. This finite element technology has ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales