Numerical and analytical modeling of orthogonal cutting : The link between local variables and global contact characteristics
Article dans une revue avec comité de lecture
Abstract
The response of the tool–chip interface is characterized in the orthogonal cutting process by numerical and analytical means and compared to experimental results. We study the link between local parameters (chip temperature, sliding friction coefficient, tool geometry) and overall friction characteristics depicting the global response of the tool–chip interface. Sticking and sliding contact regimes are described. The overall friction characteristics of the tool are represented by two quantities: (i) the mean friction coefficient qualifies the global response of the tool rake face (tool edge excluded) and (ii) the apparent friction coefficient reflects the overall response of the entire tool face, the effect of the edge radius being included. When sticking contact is dominant the mean friction coefficient is shown to be essentially the ratio of the average shear flow stress along the sticking zone by the average normal stress along the contact zone. The dependence of overall friction characteristics is analyzed with respect to tool geometry and cutting conditions. The differences between mean friction and apparent friction are quantified. It is demonstrated that the evolutions of the apparent and of the mean friction coefficients are essentially controlled by thermal effects. Constitutive relationships are proposed which depict the overall friction characteristics as functions of the maximum chip temperature along the rake face. This approach offers a simple way for describing the effect of cutting conditions on the tool–chip interface response. Finally, the contact length and contact forces are analyzed. Throughout the paper, the consistency between numerical, analytical and experimental results is systematically checked.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteMAACHOU, Asma; MALTI, Rachid; MELCHIOR, Pierre; BATTAGLIA, Jean-Luc; OUSTALOUP, Alain; HAY, Bruno (Société Française de Thermique / Congrès Français de Thermique - Thermique en conditions extrêmes, 29 mai - 1er juin 2012, Bordeaux, 2012)Les modèles linéaires non entiers ont prouvé leur efficacité dans la modélisation de phénomènes de diffusion thermique pour de faibles variations de température. Cependant, pour de larges variations de température, comme ...
-
Communication avec acteThe present investigation focuses on the evaluation of tool wear and surface integrity in the context of CFRP cutting. Series of drilling experiments were performed on CFRP plates using cemented carbide solid drills with ...
-
Communication avec acteM'SAOUBI, Rachid; CHANDRASEKARAN, H.; COULON, Bertrand; MARQUES, M.J.; MARTINS DO OUTEIRO, Jose Carlos (2008)Machinability enhancement of hot work tool steels can be achieved intrinsically through tailoring of alloying elements and steel processing route but also externally through the use of adequate tooling. The aim of the ...
-
Article dans une revue avec comité de lectureUMBRELLO, Domenico; M'SAOUBI, Rachid; JAWAHIR, I.S.; MARTINS DO OUTEIRO, Jose Carlos (Taylor & Francis, 2015)Efforts on numerical modeling and simulation of metal cutting operations continue to increase due to the growing need for predicting the machining performance. A significant number of numer- ical methods, especially the ...
-
Article dans une revue avec comité de lectureBRAUGE, David; MADKOURI, Rachid; CLEMENT, Robert; REINA, Vincent; BRAUGE, Thomas; GAILLARD, Stephan (Elsevier, 2017)Thoracic disc herniation is a rare pathology for which surgical treatment is difficult. The discovery of asymptomatic or only slightly symptomatic lesions can be problematic, especially in cases of marked canal stenosis. ...