• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic Decision Trees using SVM for Multi-class Classification

Communication avec acte
Author
URIBE, Juan Sebastian
BOUAMAMA, Karima
7736 PSA Peugeot - Citroën [PSA]
PENGOV, Marco
136342 PSA Peugeot Citroën
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc

URI
http://hdl.handle.net/10985/7401
Date
2013

Abstract

In the automotive repairing backdrop, retrieving from previously solved incident the database features that could support and speed up the diagnostic is of great usefulness. This decision helping process should give a fixed number of the more relevant diagnostic classified in a likelihood sense. It is a probabilistic multi-class classification problem. This paper describes an original classification technique, the Probabilistic Decision Tree (PDT) producing a posteriori probabilities in a multi-class context. It is based on a Binary Decision Tree (BDT) with Probabilistic Support Vector Machine classifier (PSVM). At each node of the tree, a bi-class SVM along with a sigmoid function are trained to give a probabilistic classification output. For each branch, the outputs of all the nodes composing the branch are combined to lead to a complete evaluation of the probability when reaching the final leaf (representing the class associated to the branch). To illustrate the effectiveness of PDTs, they are tested on benchmark datasets and results are compared with other existing approaches.

Files in this item

Name:
PIMM-IEEE-URIBE-2013.pdf
Size:
593.5Kb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • A Probabilistic Multi-class Classifier for Structural Health Monitoring 
    Article dans une revue avec comité de lecture
    URIBE, Juan Sebastian; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (Elsevier, 2015)
    In this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage detection, localization, and quantification in smart mechanical structures. As these structures can face damages of different ...
  • Single atom convolutional matching pursuit: Theoretical framework and application to Lamb waves based structural health monitoring 
    Article dans une revue avec comité de lecture
    ccRODRIGUEZ, Sebastian; ccRÉBILLAT, Marc; ccPAUNIKAR, Shweta; ccMARGERIT, Pierre; ccMONTEIRO, Eric; ccCHINESTA SORIA, Francisco; ccMECHBAL, Nazih (Elsevier BV, 2025-06)
    Lamb Waves (LW) based Structural Health Monitoring (SHM) aims to monitor the health state of thin structures. An Initial Wave Packet (IWP) is sent in the structure and interacts with boundaries, discontinuities, and with ...
  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    Communication avec acte
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
  • Laser shock a novel way to generate calibrated delamination in composites: concept and first results 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2015)
    Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales